
SC series controller

Software Operation Manual

P2/262

Revised resume

issue date Manual number Revised content

description
Remark

2021-06 V1.0 first edition

SC series controller related manuals

 SCThe types of series manuals are as follows. Please refer to the corresponding manual

according to the application.

 Each manual can be downloaded from our homepagehttp://www.step-sigriner.com.cndownload.

NO Manual name content

1. SC Series Controller Software Operation Manual
Software installation, configuration,

debugging, coding, etc.

2. SC Series Controller Software Programming Manual

Motion control programming, common

programming libraries, instructions,

etc.

3. SC20 Controller Hardware Manual
SC20 related hardware interface, wiring

and maintenance

4. SC30 Controller Hardware Manual
SC30 related hardware interface, wiring

and maintenance

5.
SC series controller visual interface operation

instructions

Visual interface related operations and

programming

http://www.step-sigriner.com.cn

P3/262

Precautions

unenforceable matter; must do

Danger

Please do not use it in a place where it is easy to be

splashed with water, in an environment with corrosive gas,

in an environment with flammable gas, or near combustible

materials.

May cause fire, electric shock,

malfunction, damage

Do not use it in places subject to severe vibration and

shock.

May cause electric shock, injury,

fire

Do not use the wire when it is soaked in oil or water.
May cause electric shock,

malfunction, damage

Do not place around heating elements such as heaters or

large coiled resistors.
May cause fire or malfunction

Do not perform wiring or operation with wet hands.
May cause electric shock, injury,

fire

Wiring work must be carried out by professional electrical

engineers.

Electric shock may result from

wiring work performed by persons

without relevant expertise

Please refer to the manual for correct wiring.

Incorrect wiring may result in

electric shock, injury, malfunction,

damage

The cables should be properly connected, and the energized

parts must be effectively insulated by insulating

materials.

Incorrect wiring, short circuit may

cause electric shock, fire,

malfunction

Please do a good job of standard installation. Failure to

follow the standard installation may cause fire or other

personal accidents.
Failure to install may result in

injury, electric shock, fire,

malfunction, damage
Please install an external emergency stop circuit to ensure

that the operation can be stopped in time and the power

supply can be cut off in an emergency.

The movement, wiring and inspection of the controller

should be carried out on the premise that there is no danger

of electric shock after the power supply is cut off and the

charging indicator light goes out.

Electric shock may result when work

is performed without turning off the

power

Notice
Do not drop it or turn it upside down during transportation

and installation work.
May cause injury, malfunction

Do not stand on the product and do not place heavy objects

on the product.

May cause electric shock, injury,

malfunction, damage

P4/262

Do not place obstacles that obstruct ventilation around

the controller peripherals.

possiblecause a temperature rise that

could eventually lead to a fire

Do not block the heat release holes and do not insert

foreign objects.
May cause injury, fire

Do not subject the product to strong shocks. may cause malfunction

Do not turn on and off the main power of the controller

frequently.
may cause malfunction

After the power outage is over and the power supply is

restored, it may restart suddenly, so do not get close to

the machine. Avoid unexpected situations when restarting

and ensure personal safety.

may cause injury

Do not modify, disassemble or repair by yourself.
May cause fire, electric shock, injury,

malfunction

Please observe the specified installation method and

direction.

Injuries, malfunctions may result from

improper installation and settings

The eye bolts of the motor are only used for motor

transport, not for machine transport.

If it is used to transport the machine,

it may cause injury or malfunction.

Make sure that the ambient temperature of the controller

is within the operating temperature and humidity range.
Injuries, malfunctions may result from

improper installation and settingsThe distance between the controller and the inside of the

control box and other machines should be set to the

specified distance.

Please use the specified voltage.
Use outside the rated voltage range may

result in electric shock, injury, fire

Safety devices should be installed to deal with the

built-in brake, the idling and locking of the reducer, and

the leakage of the reducer grease.

Failure to install may result in damage

or contamination

When an alarm occurs, remove the cause of the alarm and

ensure safety, clear the alarm state and restart.

Failure to correct the cause of the

error may result in injury

For details, please refer to the hardware manual

P5/262

content

SC series controller related manuals ..2
Precautions ...3
content ... 5
glossary .. 9
Chapter 1 Overview ..11

1.1. SC Series Controller Overview ...11
1.2. Overview of STEP Automation Studio ...11

1.2.1. Introduction to STEP Automation Studio software ... 11
1.2.2. Software acquisition and installation requirements ... 12
1.2.3. Installation steps .. 13
1.2.4. Uninstalling STEP AS ...17

1.3. STEP AS and hardware connection ... 17
Chapter 2 Quick Start ... 18

2.1. Start the programming environment ..18
2.2. Exit the programming environment ..18
2.3. Names of the parts ..19

2.3.1. Menu bar ..20
2.3.2. Toolbar ..25
2.3.3. Navigation Bar Window ... 28

2.4. Engineering operations ... 29
2.4.1. Operation process .. 29
2.4.2. Project Wizard .. 29
2.4.3. Save the project ..33
2.4.4. Open Project ...34
2.4.5. Close the project .. 35
2.4.6. Composition of the project .. 36
2.4.7. Creating a backup when saving a project .. 36
2.4.8. Automatically save project files ... 37
2.4.9. Exporting and importing objects ... 37
2.4.10. Variable table export and import ...40
2.4.11. Export and import project archives ... 41
2.4.12. Adding objects ..42
2.4.13. Adding Devices ... 45

2.5. Device configuration ... 46
2.5.1. Overview .. 46
2.5.2. Toolbar ..48
2.5.3. Add master ... 50
2.5.4. Adding Devices ... 51
2.5.5. Synchronization disable/enable master .. 53
2.5.6. Right-click function ...54
2.5.7. Custom Layout ..56
2.5.8. Open configuration table ... 56

2.6. Creating a program..56
2.6.1. The process of creating a program.. 56
2.6.2. Program creation interface .. 57
2.6.3. Creating Program Objects (POU Objects) .. 67
2.6.4. Types of programming languages .. 68
2.6.5. Variables ... 70
2.6.6. Functions and function blocks ... 80

2.7. Input Assistant ...86

P6/262

2.7.1. Start the input assistant ... 86
2.7.2. Coding Assistant ... 87

Chapter 3 System Configuration .. 89
3.1. Controller Configuration ... 89

3.1.1. Communication Settings .. 89
3.1.2. Applications ..91
3.1.3. Backup and Restore ..92
3.1.4. Documentation ...93
3.1.5. Users and Groups ... 93
3.1.6. PLC Settings .. 94
3.1.7. Access Rights .. 95
3.1.8. Logs ...96
3.1.9. Task Configuration ..97
3.1.10. Status ..97
3.1.11. Information ...98
3.1.12. Display language ...98
3.1.13. Version display ... 99
3.1.14. Online Help ...100

3.2. EtherCAT configuration ... 102
3.2.1. Autonomous EtherCAT Master Configuration ... 102
3.2.2. Default EtherCAT Master Configuration .. 104
3.2.3. Autonomous EtherCAT Slave Configuration .. 108
3.2.4. Scanning Devices ..115
3.2.5. Common faults of EtherCAT...115

3.3. Modbus serial port configuration ... 116
3.3.1. Add Modbus Device ... 116
3.3.2. Modbus Master Configuration ...118
3.3.3. Modbus Slave Configuration ..119
3.3.4. Modbus common faults ... 122
3.3.5. ModbusTCP Configuration ... 123

3.4. CANopen configuration ...123
3.4.1. CANbus configuration .. 123
3.4.2. CANopen Master Configuration ...124
3.4.3. CANopen Slave Configuration ..126
3.4.4. CANopen communication failure ...127

3.5. Local built-in IO configuration ...128
3.5.1. Adding Devices ... 128
3.5.2. SC20 local IO configuration ..131

3.6. LocalBus configuration .. 133
3.6.1. Adding Devices ... 134
3.6.2. localbus master configuration ... 134
3.6.3. localbus slave configuration ...135

3.7. Pulse axis configuration ...137
3.7.1. Add pulse axis master and slave device ...138
3.7.2. Configuring the Pulse Axis Slave Device .. 139
3.7.3. Controlling Pulse Axis Slave Devices .. 140

Chapter 4 Programming Fundamentals ... 141
4.1. Direct Address ... 141
4.2. Variables .. 142

4.2.1. Variable Definition ..142
4.2.2. Variable types ...149

4.3. Constants ...155
Chapter 5 Programming Languages ... 158

5.1. Introduction to programming languages ​ ​ supported by STEP AS .. 158

P7/262

5.2. Structured Text Language (ST) .. 158
5.2.1. Expressions ...158
5.2.2.ST instruction .. 159

5.3. Ladder Logic Diagram (LD) .. 166
5.3.1. Overview .. 166
5.3.2. Ladder Diagram Elements ..166
5.3.3.LD General Settings ... 170
5.3.4.LD menu commands ... 172
5.3.5. Drag and drop operation ..180
5.3.6. Graphic Display Tool ...182
5.3.7.LD debugging ...183

Chapter 6 Debugging and Diagnosis .. 187
6.1. Run/Stop ..187

6.1.1. Running and Stopping the Controller .. 187
6.1.2. Single cycle ... 189

6.2. Breakpoints ..189
6.2.1. Breakpoint setting ..189
6.2.2. Execution point setting .. 190
6.2.3. Call Stack View ... 192

6.3. Debug operations ..193
6.3.1. Writing of values ​ ​ and forcing of values .. 193
6.3.2. Monitoring ..194
6.3.3. Process Control .. 195
6.3.4. Operating Modes ... 195

6.4. Monitoring functions .. 196
6.4.1. Monitoring variables in the declaration editor ... 196
6.4.2. Monitoring variables in the implementation part of the program... 196
6.4.3. Monitoring variables in the watch view .. 197

6.5. Reset .. 198
6.5.1. Warm reset/cold reset/reset (PLC initialization) ... 199
6.5.2. Resetting the device from STEP AS .. 199

6.6. Device Tracking Function ...200
6.6.1. Device Tracking General Features ..200
6.6.2. Device tracking analysis function ...202

Chapter 7 Axis Operation Control Configuration ... 208
7.1. Axis operation configuration ...208

7.1.1. Basic axis settings ...208
7.1.2. Unit Conversion Configuration ...209
7.1.3. Automapping settings .. 210

7.2. Single axis control ..210
7.2.1. Enter the axis control page .. 210
7.2.2. Axis operation and status ...211
7.2.3. Multi-axis debugging ..213

7.3. Simulating a Servo Drive ... 214
Chapter VIII Program Editing Method ..216

8.1. Structured Text (ST) Programming ..216
8.1.1. Syntax of ST programs ..217
8.1.2. Commenting out ST programs ... 218
8.1.3. Calling function blocks ... 219

8.2. FBD/LD/IL programming ... 219
8.2.1. FBD/LD/IL Editor ...219
conventional components ..220

8.3. Sequential Function Chart (SFC) Programming .. 225
8.3.1. SFC editor ... 225

P8/262

8.3.2. Execution order .. 227
8.3.3. Qualifiers for Actions ..227
8.3.4. SFC logo .. 228
8.3.5. Components "Step" and "Transform" ..229
8.3.6. Element "action" .. 231
8.3.7. Element "Macro" ..231

8.4. Continuous Function Chart (CFC) ..232
8.4.1. CFC editor. .. 232
8.4.2. Position of the break point in the CFC editor .. 232
8.4.3. CFC components .. 232

Chapter 9 Convenient Functions of STEP AS ..235
9.1. Quick Access to Simulation Functions .. 235
9.2. Engineering Comparison Quick Access ... 235
9.3. 402 axis automatic addition function ... 235

Chapter 10 Management Library ... 237
10.1. Libraries to be used in project query .. 237
10.2. Viewing library functions .. 238
10.3. Adding Libraries to the Application .. 240
10.4. Adding Libraries to the Repository ... 240
10.5. Using Libraries in Programs ...241

10.5.1. Graphical programming calls such as LD ... 241
10.5.2. ST language calls .. 243
10.5.3. Input Assistant ..243

10.6. Development Libraries .. 244
10.6.1. Development library example ..244
10.6.2. Library Versions .. 247
10.6.3. Library encryption .. 247

Chapter 11 Safety Functions .. 249
11.1. User Management ...249

11.1.1. Project User Management ...249
11.1.2. Creating new users and groups ..249
11.1.3. Setting Operation Permissions ...252
11.1.4. User login and logout ...254
11.1.5. Device User Management ..254

11.2. Encryption ... 257
11.2.1. Encrypting project files .. 257
11.2.2. Encryption of communication lines ... 258

11.3. Security function: write protection ...259
11.3.1. Open as read-only .. 259
11.3.2. Setting the Published Flag ..260

After-sales service ... 261

P9/262

glossary

■ IEC61131

The International Standard IEC 61131 is the International Electrotechnical Commission (IEC)

a worldwide standard that defines the programming language for PLCs. It defines the following

5 programming languages.

 Ladder Diagram (LD)

 Structured Text (ST)

 Sequential Function Chart (SFC)

 Function Block Diagram (FBD)

 Instruction List (IL)

 Continuous Function Chart CFC

■ EtherCAT

An industrial real-time Ethernet. Included in the IEC61784 international standard.

■ STEP AS

The full name is STEP Automation Studio. Integrated development and debugging tools for STEP

controllers.

■ automatic running

It is an operation mode to automatically act upon application.

■ run manually

Refers to the operation mode that is activated during initial startup or debugging.

Return-to-origin, JOG operation, and pulser operation belong to this category.

■ Return to origin

The reference position used for positioning is called origin, and moving to this position

is called origin return. Move to the origin of the preset reference position, and set the

coordinates there as absolute position zero. In addition, when the limit (+) input and the limit

(-) input are input, the rotation of the motor is automatically reversed, the origin and near

origin are searched, and the origin return operation is performed automatically.

■ JOG operation

Refers to the manual operation mode, running a single instruction or a single step to make

the motor or system run.

■ Limit (+), Limit (-) input

This is the limit switch input used to set the limit during motor operation (movement). The

limit (+) input indicates the limit point on the increasing side of the passing value, and the

P10/262

limit (-) input indicates the limit point on the decreasing side of the passing value.

■ soft limit

Limits on the software can be set for the absolute coordinates managed in the SC series

controller. If the software limit range is exceeded, an error will be reported, and a deceleration

stop will be performed. The deceleration time can be set individually.

■ Torque control

The output torque of the servo amplifier can be arbitrarily limited.

■ Linear interpolation

In position control, in the Cartesian space of the axis group, the motion trajectory will

be linearly controlled by interpolation control. Take into account the combined speed and the

split axis speed limit for planning.

■ Circular interpolation

In the position control, in the Cartesian space of the axis group, the motion trajectory will

be controlled by the interpolation control in an arc state. Take into account the combined speed

and the split axis speed limit for planning.

■ edge detection

It is one of the detection methods of the request signal assigned by this unit, and executes

various request processing using the rising edge when the request signal is ON as a trigger.

Note: The next request cannot be received until the request signal is turned OFF.

第一章 OverviewP11/262

第一章 Overview

1.1. SC Series Controller Overview

SC series controllers are modular programmable logic controller series, which can provide

users with intelligent and automated solutions. It mainly includes SC20 single-machine small

controller series and SC30 medium and large controller series, which adopt rack-type layout,

and each rack supports local expansion modules. For details, please refer to "SC20 Controller

Hardware Manual" and "SC30 Controller Hardware Manual".

1.2. Overview of STEP Automation Studio

1.2.1. Introduction to STEP Automation Studio software

STEP Automation Studio (STEP AS) is the standard software for development and application

of SC series programmable controller products. It is optimized and developed based on STEP

AS AP V3 platform, provides a complete configuration, programming, debugging, monitoring

environment for SC series programmable controllers, and can handle the powerful IEC 61131-3

language flexibly and freely. At the same time, it provides the functions required for the

solution such as UI configuration, PLCOpen Motion library, and technology package.

1. The project and equipment management can be completed through STEP AS, providing the

following configuration contents for SC series products:

 Application configuration

 CPUconfigure

 local high speedI/Oor remoteI/OModule configuration

 EtherCAT/Modbus/CANOpenEqual bus configuration and connected station

configuration

 Visual interface

2. It can complete the functions of program writing, downloading and debugging:

 Support standardized programming(meets theIEC61131-3standard)All six

programming languages:structured text(ST), function block diagram(FBD), command

list(IL), Ladder Diagram(LD), sequential function diagram(SFC)and Extended

第一章 OverviewP12/262

Programming Language Continuous Function Charts(CFC)

 Flexible and comprehensive function block library, and supports user-defined

library

 Offline simulation function

 Intelligent debugging and error-checking function, supports sampling tracking and

curve display of variables, and supports complex operations such as time domain

and frequency domain

 Precompile and compile error checking

 Diagnostics and Logs

1.2.2. Software acquisition and installation requirements

1) Software acquisition

The user programming software STEP AS of STEP SC series medium-sized programmable controller

is free software, installation files and reference materials of SC series products, etc.,

users can obtain through the following channels:

 Obtain the software installation CD from all levels of distributors of Newstar

 Download the software installation package for free from the "Download Center"

page of the official website of Step Sigriner: http://www.step-sigriner.com.cn/

 Contact the appropriate technician to obtain

 Since STEP is constantly improving its products and materials, it is

recommended that users update the software version in time when necessary, and consult

the latest released reference materials, which is beneficial to the user's application

design.

2) Software installation requirements

A desktop or portable PC with the following:

 Windows7/Windows10 operating system (64-bit recommended)

 CPU frequency: 2GHz or above

 RAM: 4GB or higher

 Space: 5GB or more of available hard disk space

第一章 OverviewP13/262

1.2.3. installation steps

1. Preparation before installation

a) If it is the first time to install STEP AS, please check the remaining space

of the computer hard disk, confirm that the remaining space of the target disk to

be installed has more than 5GB, and then install it directly.

b) If you are upgrading and installing STEP AS, please back up your existing

working files, uninstall the old version of STEP AS, restart the computer, and then

start installing the new version of the software.

c) When installing to a PC, log in to the PC with Administrator privileges.

d) It is best to exit 360 and other anti-virus software before installation,

otherwise an error will be reported during the installation process.

e) Please avoid using Chinese installation paths.

2. Start the installation

Please double click on "STEP AS *.*.*.*.exe" (the * part varies depending on the version).

①The following screen will be displayed, click [OK].

②The following screen will be displayed, click [Next].

第一章 OverviewP14/262

③The following screen will be displayed. After confirming the content, select [I accept

the terms of this license agreement], and then click [Next].

④The following screen will be displayed. If you need to change the installation

destination folder, click [Change] to specify the installation destination folder.

If not, please click [Next].

第一章 OverviewP15/262

Note: The installation path cannot contain Chinese.

⑤The following screen will be displayed, select [Complete installation], and then click

[Next].

⑥The following screen will be displayed, please click the [Install] button to start the

installation.

第一章 OverviewP16/262

⑦The following screen will be displayed during installation.

⑧After all installations are completed, the following screen will be displayed, please

click [Finish].

第一章 OverviewP17/262

1.2.4. Uninstall STEP AS

Use the standard Windows system uninstall software method to uninstall STEP AS, the

specific steps are as follows:

1) Select Windows system from the start menucontrol Panel, click Uninstall a

program.

A list of installed programs is displayed.

2) Double-click "STEP AS64 1.0.0.0".

The following screen will be displayed, click [Yes].

3) Click the [Yes] button.

STEP AS is uninstalled.

1.3. STEP AS and hardware connection

The programming device can be connected with the SC series controller through Ethernet

(through a hub, switch, etc.), use STEP AS software to write and download user programs, monitor

the program and control the SC series controller.

For SC20 series controllers, it can also be connected via serial port or USB interface.

第二章 Quick startP18/262

第二章 Quick start

2.1. Start the programming environment

Click the [Start] button and selectSTEPAutomationStudio→STEP AS V*.*.*.* Or

double-click the STEP AS icon on the desktop. STEP AS starts.

2.2. Exit the programming environment

Before exiting STEP AS, be sure to save the project file that is being edited and needs

to be saved.

1. Select File in the menu bar → quit.

If it has not been saved, the following screen will be displayed.

a) To exit without saving, please select [No].

b) If you need to save, please select [Yes] to save.

第二章 Quick startP19/262

2. Click the [Yes] button, STEP AS will be closed.

Note: Click directly on the [x] button can also exitSTEP AS.

2.3. name of each part

The names and display contents of each part of STEP AS are shown below.

No. name content

(1) title
Displays the project file name, [Minimize] button, [Maximize] button,

and [Close] button.

(2) Menu Bar Displays menu commands in a list, sorted by purpose.

(3) toolbar Displays instructions as icons.

(4)
navigation

bar window

Views such as devices and program POUs added to the project are displayed

in a tree structure.

(5) Main window

Displays the setting screen, information, etc. of programs and

functions.

You can switch screens using tabs.

第二章 Quick startP20/262

(6) Status field
Displays information such as the status of the compilation, the

currently logged-in user, etc.

2.3.1. Menu Bar

The displayed contents of the menu bar are as follows.

· document

project Features

New Construction New Construction.

Open project Open the saved project.

Close the project Close the currently viewed project.

Save the project Overwrite and save the currently viewed project.

save project as Save the currently viewed project with another name.

source code upload Upload the project source code as a project archive.

Source code download Download the project source code.

Print Print the active editor.

Printing preview Displays a print preview of the active editor.

page settings Opens the Page Setup dialog for composing the print layout.

List of recent

projects

Displays recently used projects.

quit quitSTEP AS.

· edit

project Features

revoke Undo the last edit.

recover Redo the edited content.

cut Cut data.

copy Copy data.

paste Paste the data.

delete delete data.

select all All Selection.

find replace

Used to find and replace.

project Features

find Opens the Find dialog.

replace Opens the Replace dialog.

Find in project Opens a dialog for "Find" objects

within the entire project.

In-Project

Replacement

Opens the dialog to "replace"

objects within the entire project.

find next Searches for the next one in the

project starting from the selected

position of the cursor.

find next

(selected)

Finds the next one within the

editor, starting from the cursor's

selection.

第二章 Quick startP21/262

project Features

find previous Searches for the previous one in

the project starting from the

selected position of the cursor.

find previous

(selected)

Finds the previous one within the

editor, starting from the cursor's

selection.

browse

Used to browse the declaration part of the defined variable and read

the usage location.

project Features

go to definition The variable and function

specified by the cursor can be

moved to the position defined in

the editor.

Browse Cross

References

The position where the variable at

the cursor position is used can be

displayed in the "Cross Reference

List" view.

Browse the call tree The variable specified by the

cursor can be called and the source

of the call is displayed in the Call

Tree view.

bookmark

You can move to a bookmarked location.

It is used to browse the declaration part of the defined variable and

read the usage location.

project Features

Toggle bookmarks Saves the selected location of the

active editor as a bookmark.

next bookmark Move to the previous bookmark

within the active editor.

previous bookmark Move to the next bookmark within

the active editor.

clear bookmarks Delete all bookmarks in the active

editor.

input assistant Variables, function blocks, operators, types, etc. that can be

inserted at the cursor position can be selected from the categories

and inserted.

automatic

declaration

Opens the auto-declaration dialog for help in declaring variables.

next message Select the next message in the message view.

previous message Select the previous message in the message view.

go to source code Moves to the location of the source code of the object that becomes

the selected message in the message view.

refactor The position where the changed variable name is used can be displayed

and all can be changed.

· view

project Features

第二章 Quick startP22/262

project Features

equipment Display the device view.

POUs showPOUview.

module Displays the module view.

information Display the message window.

element attribute Display element properties.

toolbox Show toolbox.

monitor

The viewing window is displayed.

project Features

monitor1~4 User-defined variables are

displayed at a glance for the

purpose of monitoring values.

Monitor all

mandatory

All variables whose values ​ ​ are

forced are displayed at a glance.

cross reference list The cross reference list window is displayed.

call tree Displays the call tree window.

bookmark The bookmark window is displayed.

breakpoint Display the breakpoints window.

call stack Display the call stack window.

start page Display the start page.

security fence The Safety Fence window is displayed.

Choose a viewing

angle

Choose how the windows are laid out.

project Features

STEP ASview according toSTEP ASLayout windows

in view mode.

HMIview according toHMILayout windows in

view mode.

full screen Display in full screen.

Attributes Displays the Properties dialog.

· project

project Features

add object Append object.

add folder Append folder.

scan device Scan for slave devices.

update device Update selected devices.

edit object Edit objects.

Edit object using The configuration page pops up for object editing.

Online configuration

mode

Delete the application downloaded in the controller, and change to the

state of the connected controller.

Engineering

Information

Project creator information and confirmation file information can be

set.

Project settings Project-related settings can be made

Project version

information

You can browse and set project version related.

Compare Compare the currently viewed project with the saved project.

confirm changes Via the project on the menu bar → Compare Confirm the difference of

the objects to be applied.

第二章 Quick startP23/262

export Change the object from the currently viewed project toXMLformat output

file.

import Import objects into the currently viewed project.

User Management

The viewing window is displayed.

project Features

User login Log in to the currently viewed

project.

User logged out Exit the currently viewed project.

Authorize Authorize the user.

· compile

project Features

compile Validate the syntactic structure of the object.

recompile Perform syntactic structure verification of all objects again.

generate code Generate application code.

clear Removes compilation information for the application.

clear all Same as clear, removes the compilation information of the

application.

· online

project Features

login to When logging in, the application generated by code generation will

be downloaded to the controller.

quit Log out from the currently logged in device.

download Download the program while logged in.

online modification The application program can be changed without stopping the running

controller.

warm reset to keep (RETAIN) variable and persistent (PERSISTENT) variables

other than variables are initialized.

cold reset for continuous (PERSISTENT) variables other than variables are

initialized.

initial reset Initialize all variables. Remove the active application from the

controller.

simulation The login operation can be performed without connecting the

controller, and the operation can be confirmed by the same operation

as the actual login.

Safety Set user management, project encryption, etc.

project Features

Log out the current

online user

Log out the user currently logged

in to the device.

Add device user Add users who can log in to the

device.

Change device user

password

Change the password of the user

currently logged into the device.

delete device user Delete users who can log in to the

device.

Operating mode Restrictions can be made to prevent some debugging operations from

being performed.

project Features

第二章 Quick startP24/262

debugging All debugging operations can be

performed.

locked Some operations such as new

addition of breakpoints and

forcing of variable values ​ ​
cannot be performed.

operational Changes cannot be made except for

the writing of variables.

· debugging

project Features

start up Start running the application.

stop Stop running the application.

single cycle Can make the application execute every time1cycle.

new breakpoint Create a new breakpoint.

edit breakpoint Edit breakpoints.

Set or clear

breakpoints

Set or delete breakpoints.

Disable breakpoints Disable active breakpoints.

Enable breakpoints Activates disabled breakpoints.

jump over by1The behavioral unit executes the program. If executed at the call

location of a block (function, function block), the block is executed

and moved to the next line.

jump in by1The behavioral unit executes the program. If executed at the block

(function, function block) call location, it branches to the first

line of the called block.

jump out When executed within the called block, the program is executed until

the calling block is returned. When executed outside the called block,

the program is executed until it returns to the beginning of the

program.

run to cursor Executes the program before the line specified by the cursor.

set next statement Makes the line specified by the cursor the next statement to execute,

skipping processing until that line is reached.

show current

statement

Makes the cursor jump to the next program line to be executed.

write value Only do1secondary settings. The value can be changed later according

to the program.

Mandatory value Set the value to be changed every cycle and keep that value.

release value Unenforce the value.

flow control The executed and unexecuted parts of the program can be divided by

color and monitored.

display mode The display format of the variable value to be displayed can be

selected from binary, decimal, and hexadecimal.

· tool

project Features

package manager Install or uninstall packages.

library By installing the created library into the library repository, the

functions and function blocks in the library can be used.

第二章 Quick startP25/262

project Features

Device repository You can browse, install, uninstall, and export devices.

Visual type library You can browse, install, and uninstall the visual type library.

customize Users can customize the menu bar, toolbar and other content.

Options can proceedSTEP ASof each function setting.

Import and export

options

Import and export option setting files.

· window

project Features

next editor The next screen is displayed.

previous editor The previous screen is displayed.

close all editors Close all screens.

reset window layout Sets the window's layout position to its initial state.

Create a new

horizontal series

group

Moves the currently selected screen down.

New vertical

sequence group

Moves the currently selected screen to the right.

float Put the currently selected screen in a floating state.

expand Puts the currently selected screen in the docking state.

auto hide Minimize the window.

next child window can be found in the declarations section (section1pane) and the

implementation section (p.2panes).

previous child

window

can be found in the declarations section (section1pane) and the

implementation section (p.2panes).

window A list of open screens is displayed.

· help

project Features

content Display the help documentation and navigate to the Contents page.

index Display the help documentation and navigate to the index page.

search Display the help documentation and navigate to the search page.

about Display version information.

2.3.2. toolbar

The display contents of the toolbar are as follows.

The specific functions are as follows:

name icon Features

New Construction New Construction.

Open project Open the saved project.

Save the project Overwrite and save the currently viewed project.

Print Print the active editor.

revoke Undo the last edit.

Reply Redo the edited content.

第三章 System ConfigurationP26/262

name icon Features

cut Cut data.

copy Copy data.

paste Paste the data.

delete delete data.

Finds a specific string that

occurs within the active editor.

Finds a specific string that occurs within the

active editor.

Replace a specific string

appearing within the active editor

with something else.

Replace a specific string appearing within the

active editor with something else.

Find the specified string from the

current project.

Find the specified string from the current

project.

Replace the specified string from

the current project.

Replaces the specified string with something

else from the current project.

Toggle bookmarks Saves the selected location of the active editor

as a bookmark.

previous bookmark

(activity editor)

Move to the previous bookmark within the active

editor.

next bookmark

(activity editor)

Move to the next bookmark within the active

editor.

clear all bookmarks

(activity editor)

Delete all bookmarks in the active editor.

Attributes Display properties.

add object Append object.

edit object Open the object.

compile Performs compilation of in-application objects.

login to When you log in, the code-generated application

will be downloaded to the controller.

quit Log out from the currently logged in device.

start up Start running the application.

stop Stop running the application.

Online configuration mode The downloaded application program in the

controller is deleted and the controller is

connected.

jump over by1The behavioral unit executes the program.

If executed at the call location of a block

(function, function block), the block is

executed and moved to the next line.

jump in by1The behavioral unit executes the program.

If executed at the block (function, function

block) call location, branch to the first line

of the called block

jump out

When executed within the called block, the

program is executed until the calling block is

returned.

When executed outside the called block, the

program is executed until it returns to the

第三章 System ConfigurationP27/262

name icon Features

beginning of the program.

run to cursor Executes the program before the line specified

by the cursor.

set next statement Makes the line specified by the cursor the next

statement to execute, skipping processing until

that line is reached.

show current statement Makes the cursor jump to the next program line

to be executed.

Toggle targeting Switch to Works already in the menu bar →
Engineering locationSet [Switch Location] to a

valid language.

confirm changes Make sure it works in the menu bar →
CompareChanges to the application object in .

Compare Displays the Project Comparison page.

start simulation Start the simulation.

stop simulation Stop simulation.

export variable export variables toExcel.

import variable importExcelvariable table.

plug into the network Insert empty net.

Toggle Network Annotation Status Change the annotation status of the selected

network.

Insert output Inserts a new assignment at the specified

location.

Insert the coil Insert the coil at the specified location.

Insert set coil Insert the set coil at the specified location.

Insert the reset coil Insert the reset coil at the specified location.

insert contact Insert at the specified locationacontact.

insertbcontact Insert at the specified locationbcontact.

Insert contact (right) Insert to the right of the specified

positionacontact.

Lower parallel insert contacts Inserted in parallel with the contact at the

specified positionacontact.

Insert in parallelbcontact Inserted in parallel with the contact at the

specified positionbcontact.

Insert contacts in parallel Insert in parallel on the upper side of the

contacts at the specified positionsacontact.

insert operation block Opens the input assistant for inserting a box at

the specified location.

Insert empty operation block Insert an empty box at the specified location.

insert tapeEN/ENOthe operation

block

for inserting the attached at the specified

positionEN/ENObox to open the Input Assistant.

insert withEN/ENOfunction block Insert the attached at the specified

locationEN/ENObox.

insert jump Inserts a new jump at the specified position.

insert label Inserts a label for the currently selected

network.

第二章 Quick startP28/262

name icon Features

insert return Insert return at the specified position.

insert input Append input to the specified box.

Negate Appends "not" to the selected element.

edge detection Adds edge detection (rising edge detection) to

the selected element.

Position/reset Convert the selected coil to a set or reset coil.

set output connection Convert the output box to a forward output box.

insert branch Inserts a branch to the right of the currently

selected contact.

insert branch below Inserts a new branch below the currently

selected branch.

insert branch above Inserts a new branch above the currently

selected branch.

set branch start/end point Sets the currently selected line as the branch

start position.

2.3.3. navigation bar window

The display contents of the navigation bar window are shown below.

NO. name icon Features

(1)

Window

Position

window

Location

· New Horizontal Tab Group

Moves the currently selected screen to the right.

· New Vertical Tab Group

Moves the currently selected screen down.

· Suspended

placed in suspension.

· butt

in the docked state.

· auto hide

The navigation bar window will minimize and become hidden.

Auto

Hide

The navigation bar window will become always on.

The navigation bar window will minimize and become hidden.

第二章 Quick startP29/262

hide

Close Close the navigation bar window

(2) device object Set the device object.

(3) application

object

Set the application object.

(4) program(POU)

object

Set the program object (POUobject).

(5) task object Set the task object.

(6) Device

configuration

Click to enter the device configuration page.

2.4. Engineering operations

2.4.1. Operating procedures

Please refer to the following process when creating a project:

① To create a new project, you can create a project through the project wizard or manually

(controller selection, new main program POU, etc.).

② Write code and configuration, write programs in five languages, and configure tasks,

buses, and configuration of interconnected devices.

③ Connection, wiring, connect STEP AS PC and controller and controller and external

equipment.

④ Log in to download the program.

⑤ Debug the program, can monitor and track variables in a single step or cycle, and display

and calculate the curve.

⑥ Auxiliary operations, such as code encryption, user management, startup settings, etc.

2.4.2. Project Wizard

When using STEP AS to create a program for the first time, it is necessary to create a

new project and set the equipment and programming language to be used. The steps for creating

a new project are described below.

The following is an example of a project created using a ladder diagram (LD) for the

SC30-B6H controller.

(1) start upSTEP AS, the start page will be displayed.

第二章 Quick startP30/262

(2) choose"New Construction"to display the New Project dialog box.

(3) Select Project → STEP Standard Project, specify the file name of the project

in the Name column, and specify the save location of the project in the Location column.

(4) Click the [OK] button.

show"STEP Standard Engineering"project wizard, click [Next].

第二章 Quick startP31/262

(5) The following basic configuration page appears, set the controller model,

program name and programming language, and click [Next].

(6) Enter the following expansion module configuration page according to the

selected controller. The expansion module configuration page includes device type

selection and pulse selection. The controller does not supportAxis Poolor the number

of pulses supported by the controller is0When the pulse is not available, the number

of added pulses can be configured in other cases.

第二章 Quick startP32/262

Select a device type and click the Add button next to it to add the corresponding device

to the configured device list. Multiple devices can be added in the same way.

The configured device information can be deleted by pressing the clear button or

double-clicking the selected device. The clear button will clear all device configuration

information, and double-clicking will delete the selected settings. After the configuration

is complete, click [Next].

(7) After the configuration is completed, the following summary page will appear,

displaying the project configuration information, click [Finish] to end the new project.

第二章 Quick startP33/262

(8) After the new project is completed, the following project tree structure is

generated.

 To create a new project, you can select the file in the menu bar → New Construction to create.

2.4.3. Save the project

1.Select File in the menu bar → Save the project, or press the shortcut key "Ctrl+S".

第二章 Quick startP34/262

 Save the created project. The saved project will be saved as ".project”suffixed files.

 For unsaved projects, "" is displayed after the project file name in the title bar*”.

 The project being created is saved. "*”disappear.

 To change the name of an existing project when saving the project, select File in the menu bar → save

project as.

2.4.4. Open project

1. Select File → in the menu bar Open project. Displays the Open Project dialog box.

2. Select the project file, and then click the [Open] button. The selected project

file will be opened.

第二章 Quick startP35/262

2.4.5. Close the project

1.Select File in the menu bar → Close the project. Close the project being created.

 If you select "Close Project" without saving the updated project file, a dialog box to confirm saving the

project will be displayed.

Click the [Yes] button to save the project.

第二章 Quick startP36/262

2.4.6. Composition of the project

2.4.7. Create a backup when saving a project

When saving a project, you can keep the project file before updating as a backup file.

Backup files have the extension ".backup".

(1) 1.Select Tools in the menu bar→Options,show"Options"dialog.

(2) 2.Select the Load & Save category to display the Load & Save settings page.

第二章 Quick startP37/262

(3) 3.Check "Create backup file", and then click the [OK] button. After that, when

saving the project, the project file before the update will be saved as

".backup"document.

Note: To restore a backed up project file, manually change the file extension from ".backup”Change to

and then open the project file in STEP AS.

2.4.8. Automatically save project files

The project file being edited can be automatically saved. Even if STEP AS exits abnormally

and data is lost, the file can be restored to the location where it was automatically saved.

Backup files have the extension ".autosave".

1. Select Tools in the menu bar → Optionsto display the Options dialog box.

2. Select the "Load & Save" category to display the "Load & Save" setting page. Refer

to the previous section for the interface.

3. Check "Auto save every time", change the interval of saving time in minutes (initial

value: 10 minutes), and then click the [OK] button.

4.When set to autosave, project files are saved as ".autosave" files at specified intervals

when editing a project.

Note: inWhen STEP AS exits abnormally and opens the project file again after closing the project file, you

can select the original project file".project”, or as an autosaved project file".autosave"in the selection. To open

the auto-saved project file, click the [Open Auto-Save File] button.

2.4.9. Export and import objects

The objects of the project can be exported to the XML format file, and the extension of

the export file is ".export". Exported files can also be imported into STEP AS.

 export object

1. Select the project in the menu bar → export. Displays the Export dialog.

第二章 Quick startP38/262

2. Select the objects to export. Usually no changes are required.

3. Click the [OK] button to display the "Export" dialog box. Change the file name and

save location as needed.

4. Click the [Save] button. Execute the export, and there will be a prompt for success

or not.

第二章 Quick startP39/262

Note: When importing in STEP AS, please select only one object under [Application] to export.
import object

This section describes the steps for installing the exported engineering objects into

STEP AS.

For example, to import objects under the application object, follow these steps.

1. After selecting the project in the navigation bar window, select the project in the

menu bar → import. Displays the Import dialog.

2. Select ".export”file, and then click the [OK] button. Displays the Import dialog.

Importable objects are displayed in the Insert Table Item column.

第二章 Quick startP40/262

3. Uncheck the objects that do not need to be imported, and then click the [OK] button.

Execute the import.

Imported objects are displayed under Projects in the Navigation Bar window.

2.4.10. Variable table export and import

Global variables and program blocks support the export and import of variables. In these

two pages, the export and import of the toolbar becomes enabled. .

1.Click the export icon The variable list can be exported toin an Excel file.

第二章 Quick startP41/262

2.Click the import icon Excel variable tables can be imported into the program.

2.4.11. Export Import Project Archive

1. In addition to the pure interface library, ensure that the fixed version of the library

is integrated in the project. To do this, open the "library management", and check that a

fixed version specification contains "*”of all items.

2.Make sure a fixed compiler version is set in the project settings. to check,chooseproject

→ Project settings → compile optionscategory.

3.Make sure a fixed view profile is defined in the project settings. to check,chooseproject

→ Project settings → View Profilecategory.

4. Please make sure that the currently opened application is the same as the application

currently on the PLC. This means that the "startup application" must be the same as the project

in the programming system. Go to check and see the project name in the title bar of the

"Programming System" window: if "*”appears after the name, which means that the project has

been modified but not saved. Application and startup application may not correspond!

 Note: In this case, first create a (new) startup application. The automatic occurrence of the

第二章 Quick startP42/262

download process of the application depends onPLCand application properties. For explicit creation, select

command online → Create a startup application. Then execute the about command in the helponline →

login and online → loaddownload.

5.Launch on the controller about the commanddebugging → start ups application.

6.Generate a project file: select document → Engineering Archive → save/send archive.

exist"Engineering Archive"dialog box, also select the following information:

 Download info file

 library configuration file

 Referenced device

 referenced library

 View Profile

Save the project file in a place that can be accessed by PC2.

7.Log out of the controller: To do this, select online → log out. before you

reconnectPC2Before, you could stop and restart without reservationPLC.

8.Extract project files toPC2:choose document → Engineering Archive → unzip archive

And open the above saved document. In the Extract Archive dialog, activate the same information

as described above when generating the documentation.

9.Open the project and log into PLC "xy" again.

2.4.12. add object

An application that can add objects for creating programs (POU objects) and objects with

wu yun
no option

第二章 Quick startP43/262

various functions to the project.

For example, if you want to add a POU object for ST program, follow the steps below.

1. Right-click to select [Application] in the navigation bar, and select Add Object →

POU from the displayed menu.

The "Add POU" dialog box is displayed, first select the type, the default is "Program",

and other functions include function blocks and functions; then select the implementation

language.

第二章 Quick startP44/262

2. Enter the program name in the name field, select the program type in the description

language field, and then click the [Open] button.

The [POU] object describing the program selected in the language bar is added to the

navigation bar window.

第二章 Quick startP45/262

2.4.13. Add device

You can add devices to the devices in the project.

For example, to add a device under SC30-B6H, please follow the steps below.

1. Right-click the "SC30-B6H" device in the navigation bar window and select "Add Device"

from the displayed menu.

The Add Device dialog box is displayed, and the string to filter can be typed in the text

box.

第二章 Quick startP46/262

2. Select the device to be added, and click the [Add Device] button to complete the

addition.

Note: The addition of devices can also be done through graphical configuration (refer to the chapter on
device configuration below).

2.5. Device configuration

STEP AS supports the visual configuration of projects.

2.5.1. Overview

1.Double click on the navigation bar icon to enter the device configuration.

第二章 Quick startP47/262

Note: When there are multiple STEP controllers in the project, only the first added STEP controller has

the visual configuration function.

2.The device configuration includes the page drawing area on the left and the device tree

on the right. The drawing area of ​ ​ the page draws the devices that have been added

in the current project, the device tree displays the slaves and IO devices in the current

device library, and the device tree can be used to add devices to the project.

3.Different controllers customize the display hardware diagram.

Note: The selected device border isred, the device border the mouse is over isOrange.

第二章 Quick startP48/262

4. Device tree

The device tree, on the one hand, shows all addable types of slaves supported by the current

controller (Modbus/CANOpen/EtherCAT/

StepLbus/Local/PAll or part of the types in ulse) and integrated IO devices; on the other

hand, slave devices can be added to the project.

Note: The top of the device tree is the STEP controller device in the current device library. Double-click to
update the current controller.

2.5.2. toolbar

The tools of device configuration are divided into visual page tool bar and device page

tool bar.

1.Visual page toolbar.

The specific functions are as follows:

name icon Features

global display The drawing area fits the entire page, restoring

the zoomed drawing area to tile the entire page.

enlarge With the mouse as the center, zoom in on the

drawing area.

zoom out With the mouse as the center, zoom out the

第二章 Quick startP49/262

name icon Features

drawing area.

arrange again Updates all devices under the current project

and restores the default layout.

Zoom in Press and drag the left mouse button to zoom in

on the frame selection area.

drag Click to enter the drag mode, drag the mouse to

move the entire drawing area, and then click the

button to exit the drag mode before other

operations can be performed.

back Used in combination with drag to return to the

previous position in the drawing area.

go ahead Used in combination with drag to return to the

next position in the drawing area.

copy To copy the selected device, only the slave

station and IO can be copied. The controller and

the master station cannot be copied. Only a

single copy can be selected. If multiple copies

are selected, only the last selected device can

be copied.

paste Paste the copied device. If you do not paste and

operate other devices after copying, it may

cause the paste to fail, and you need to copy it

again.

delete Delete the selected device, multiple devices can

be selected at the same time. Controllers and

StepLbus devices cannot be deleted (StepLbus

devices can be deleted using the delete function

of the right-click menu or the navigation bar).

revoke Undo added or deleted devices.

recover Used in combination with Undo, undoes an undone

action.

2.Device page toolbar.

The specific functions are as follows:

name icon Features

search Enter a keyword in the search box, and click the

search icon to highlight the searched content in

the device tree. Changing the keyword will

automatically update the searched content.

expand Click the expand icon to expand all nodes in the

list.

fold Clicking the collapse icon will collapse all

nodes to the root node.

refresh Clicking the refresh icon will refresh the

第二章 Quick startP50/262

name icon Features

available devices in the current development

environment. It is mainly used to update the

status of the device in the device tree after the

device is installed/uninstalled.

Version management Check the version management icon to display

all versions of the device, and leave the version

management icon unchecked to display only the

latest version of the device.

2.5.3. Add master

There are multiple icon buttons on the top of the controller, which correspond to the

master station types that can be configured by the current controller. Unsupported master

station types cannot be added through the topology. Master station types include ethercat,

canopen, modbus, StepLbus, STEPModbus, STEPHighSpeedBus, Local, Pulse. Double-click to add

the corresponding master device. The device version is the same as that of the controller.

If the current device does not have a consistent version, select the lower version. If there

is a master station and then double-click the button, a pop-up box will prompt whether to

delete the current master station.

第二章 Quick startP51/262

2.5.4. Add device

1. Add a slave

When adding a slave, you can select the master node first, and the device tree will

automatically expand the corresponding slave list and collapse other device lists.

There are two ways to add using the device tree on the right, double-click the device

or drag the device to the drawing area. When dragging to add a device, press the left mouse

button after selecting the device in the device list, and drag it to the position where the

device is to be placed in the drawing area.

Release the left mouse button, the device will be added to the project at the appropriate

position, and the device will be drawn at the mouse release position.

Note: Double-click the selected device directly in the device list, and the device will be added to the right
position of the last device of the same type.

2. Add LlocalBus

StepLbus is an extended IO. When adding a StepLbus slave, the device diagram will be displayed on the right
side of the controller in the form of rails. The first rail diagram is the StepLbus master, and the others are the
StepLbus slaves. When adding controller integrated IO, since the IO is integrated inside the controller, no new
device graph will be displayed on the page.

第二章 Quick startP52/262

Note: If the device fails to be added, a prompt box as shown in the figure will pop up:

The reason for the pop-up box is that the device does not match the parent device, maybe the device XML
file is incorrect and cannot be added to the current master.
When adding other device types, including IO and other non-classified devices, identify whether there is a

matching parent device node in the current project, add if there is, and prompt if not.
3.Add multiple devices

You can right-click the device to be added to the project in the device list to add multiple

devices.

The dialog box shown in the following figure pops up, enter the number of devices to be

added and click OK to add the corresponding number of devices in the topology diagram.

第二章 Quick startP53/262

2.5.5. Synchronization disable/enable master

1. Disabled master station

Right-click the master station in the navigation bar and select "Disabled Device", the

corresponding master station and slave station will be grayed out, and the disabled device

will be hidden on the visual configuration page.

2. Enable the master station

Right-click the master station in the navigation bar and select "Enable Device", the

corresponding master station and slave station are restored, and the corresponding device

will be displayed on the visual configuration page.

第二章 Quick startP54/262

2.5.6. Right-click function

The right-click functions of the visual configuration page include: delete device,

rearrange, scan device, update device, collapse device, and uncollapse.

1. Remove the device

Click Delete Device to delete the device where the mouse is located.

Note: Unlike Toolbar Delete, Toolbar deletes the currently selected device.

2. Re-layout

The rearrangement function of the right-click menu is the same as that of the toolbar,

synchronizing the engineering device and restoring the default layout.

3. Scan the device

On the visual configuration page, the EtherCAT master can also scan the device. Right-click

to select the scanning device to realize the same device scanning function as the navigation

bar.

第二章 Quick startP55/262

4. Folding the device and unfolding

When there are too many devices configured, sometimes it is not necessary to display all

the devices. You only need to browse the general situation of the devices. You can right-click

to select the folded device to hide some devices, and only display some devices at the head

and tail. When continuing to add devices, the newly added device will be displayed behind

the last device to indicate that the device is added successfully. If multiple devices are

added, you can still right-click to select the folded device, hide the device, and display

some devices at the head and tail after the addition.

第二章 Quick startP56/262

2.5.7. custom layout

Select a device for a custom layout. To select multiple devices, you can use the mouse

to make a box selection, or hold down ctrl and click the devices to be selected respectively.

It should be noted that the StepLbus device and the controller move synchronously, it cannot

move with other devices.

2.5.8. Open configuration table

Double-click the device icon to open the device detailed configuration page shown in the

figure below, and you can configure some parameters of the device.

2.6. Create a program

2.6.1. Process of creating a program

① Create a POU object

Create objects for use in programs (POU objects).

② Program input

Open the POU object, perform operations such as inputting programs, declaring variables,

第二章 Quick startP57/262

etc.

③ Compile

Compile and check the program.

If there is an error, return to 2 and modify the program.

④ Register to the task

Register the POU object to be executed to the task in the controller.

Equipped with support functions for efficient program creation.

Programs that can create functions and function blocks.

2.6.2. program creation interface

This section describes the screens for creating programs using STEP AS.

1. Main window

The upper part of the main window is the declaration section for declaring variables.

The lower part of the main window is called the implementation part and is used to describe

the processing of the program. The declaration part is also sometimes referred to as pane

1, and the implementation part is referred to as pane 2.

The method of editing the implementation section varies from program to program.

Example: Main window of ST program

If it is graphical programming, there will be a corresponding programming icon on the

right.

第二章 Quick startP58/262

 You can toggle the selection state between the declaration part (pane 1) and the implementation
part (pane 2). Window via the menu bar → next child windowor "Previous Child Window" to switch.

 The declaration part (pane 1) or the implementation part (pane 2) can be hidden.
Select Window in the menu bar → Pane 1Toggle, will hide the declarations section.
Select Window in the menu bar → 2nd paneToggle, will hide the implementation part.

 With the cursor at the variable position in the implementation section, select Edit →
Browse → go to statement, you can move the cursor to the declaration position of the variable.

 You can also declare variables of user-defined types such as structures. User-defined types
must be pre-defined in the DUT object.

2. Declaration Editor

Declare variables in the declaration editor.

There are two display formats for declarations: form format and text format. The form

format and text format can be toggled via the toggle button to the right of the declaration

editor.

The display format used can be set.

Select Tools from the menu → Options. Displays the Options dialog box.

第二章 Quick startP59/262

Select the "Declaration Editor" category in the options.

Select the format to use.

form format

a) To add a new statement, click here icon to add a new row. Enter the variable name

in the "Name" field, double-click the other item to make the cell in the input state,

and enter as needed.

第二章 Quick startP60/262

b) use The icons (move up, move down) sort the variables.

c) use icon to delete a variable.

d) To add a program name or a comment to the program name, click the Declaration Header

section.

Displays the Edit Variable Declaration Table Title dialog box.

text format

a) Enter the variable you want to declare like a text editor.

b) Annotations can be used with a row object (//) and with a multi-behavior object (*,*).

c) according to"F2"key, will start the input assistant, you can select the type of

variable, etc. and enter.

3. Automatic declaration

If you enter a variable in the implementation section that was not declared in the

declaration section, the Auto-Declaration dialog box will appear.

Change the necessary items and click the [OK] button, the variable has been declared in

the declaration section.

Example: When the variable name of the contact is entered as bVar0 in the LD program

第二章 Quick startP61/262

· Address (A)

The address of input data and output data of the controller or expansion unit can be

specified in the address bar. In this case, declare it as a variable assigned to the input

data or output data corresponding to the address of the input.

· Logo (F)

The properties of variables can be set by checking Constant, Hold, and Persistence of

the flag.

· constant (C)

declared as constant. Please enter an initial value.

· Hold (R)

declared as a holding variable. Holding variables are not initialized on warm reset.

· Continuous (P)

declared as a persistent variable. To declare a persistent variable, keep the variable

checked. Persistent variables do not initialize their value on either a cold reset or a warm

reset.

When entering an undeclared variable, it is also possible not to display the Auto-declare dialog. Select

Tools from the menu bar → Options → coding assistantCategory, uncheck "Auto-declare unknown variables

(auto-declare)".

第二章 Quick startP62/262

Using the Array Wizard, you can declare an array by simply entering the index and primitive type.
Click next to the Type column and select Array Wizard.

4. toolbox

Programs can be created by dragging the programming elements displayed in the toolbox.

Programming elements for programs other than ST programs are displayed in the Toolbox.

Example: Toolbox for LD programs

5. Program input screen settings

You can change the relevant settings of the text editor.

Select Tools in the menu bar → Optionsto open the Options dialog box. Select the Text

Editor category of the Options dialog box and change the settings.

· theme

第二章 Quick startP63/262

project name default setting set content

theme Default Sets the color scheme theme of the text editor.

Default/Dark

· edit

The specific functions are as follows:

project name default

setting

set content

Number of

revocations

100 Set the number of times you can execute [Edit] - [Undo]

in the menu bar.

Setting range: 1~1000Second-rate.

fold indentation

Specifies a way to define the structure of the code.

none:

Code is not folded.

indentation:

Combines all lines indented from the previous line into

a single unit.

Explicitly:

Display the markup as a 1-unit code section in the

comments.

word packing none

Sets the word wrapping rule for the input string.

none:

Code is not folded.

Soft line break:

When the number of characters entered in 1 line exceeds

the value of "Repeat Margin", a code continuation marker

":" is added and the line is automatically wrapped.

if"Repeat margins:"input in"0", will wrap at the far

right of the editor window.

Hard line break:

When the number of characters entered in 1 line

exceeds"repeat margin"value will automatically wrap.

but the code continuation marker will not be added":".

Also, if the first entered word has more than"repeat

margin"value, the repetition will not be performed.

Packaging range 0 Specifies the number of characters to wrap.

Setting range: 0~240

第二章 Quick startP64/262

project name default

setting

set content

Tab width 4 Specifies the number of characters to convert tabs to

spaces.

Setting range: 1~16

self-modulation

table

enable Set to convert tabs to whitespace or to remain tabs.

Enabled: Keep tabs as tabs.

Disabled: Tab characters are entered as whitespace

characters.

Indent length 4

"auto indent"settings

selection"automatic","auto-encoding", inserts a tab

character of the specified width.

but if"keep tabs"Set as"disabled", whitespace

characters will be inserted.

Setting range: 1~16

auto indent auto-encoding

Sets the action when auto-indenting is performed.

none:

Do not automatically insert indentation.

yuan:

Inserts an indent of the same width as the indent of the

previous line when wrapping.

automatic:

Lines after lines containing keywords (VAR, etc.) will

be"Indent width"The settings automatically insert

indents.

Autocode:

remove"automatic"behavior, will automatically

insert"END_IF","END_VAR"and other corresponding

keywords.

· text area

The specific functions are as follows:

project name default

setting

set content

highlight current

line

enable Highlight the line selected by the cursor.

enable/disable.

第二章 Quick startP65/262

matching bracket enable When the cursor is at the position of a

parenthesis in the code, the paired parentheses

are highlighted.

enable/disable.

end of line label disabled Small dashes with the colors set in the

theme"."Marks the end of the line.

enable/disable.

Packaging Guidelines disabled The vertical line display reference set in the

theme is used as the basis for wrapping in the

column.

If "Wrap Margin"set "0”value other than the

reference line is displayed.

enable/disable.

font - Displays the Font dialog box for setting the

font.

· scope

The specific functions are as follows:

project name default

setting

set content

Rows enable Display line numbers in the variable declaration

section and the program implementation section.

highlight current

line

enable

Enabled: Display line numbers.

Disabled: Do not display line numbers.

Change the color and highlight of the line number

selected by the cursor.

Disable "line numbers"is not highlighted.

Enabled: Changes the color and highlighting of line

numbers.

Disabled: Does not change the color of line numbers.

show bracketed range enable

Display keywords in the margin section to the left of

the line number (IF~END_IFetc.) range from start to end.

Enabled: Display range.

Disabled: The range is not displayed.

Assign the click to the margins section of the "+",

"-"mouse action.

第二章 Quick startP66/262

project name default

setting

set content

mouse action - None: No mouse action is assigned.

Collapse selection: Selects all lines in the bracketed

area.

Collapse Toggle: Expand or collapse the area in

parentheses.

Collapse All Toggle: If there are nests, expand or

collapse all nested regions.

font - Displays the "font" of the set font"dialog.

· monitor

The specific functions are as follows:

project name default

setting

set content

Enable online

monitoring

enable

In online mode, the program implementation section will

display the monitoring fields.

Enabled: Displays watch fields.

Disabled: Watch fields are not displayed.

Display the number

of numbers

3 Sets the number of digits displayed after the decimal point

in the monitor field.

Setting range: 1~20.

string length 10 Sets the maximum length of string variables in watch fields.

Setting range: 1~80.

6. Window operation of the program input screen

The display size in the program screen can be enlarged by window operation.

Icons for window operations are displayed in the lower right corner of the screen.

第二章 Quick startP67/262

2.6.3. Create Program Objects (POU Objects)

1.Create a program

Programs are created in POU objects. Only one program can be used in one POU object. To

use different programs within the project, you need to add POU objects.

2.Add toPOUobject

To add a POU object, right-click the [Application] object in the navigation bar window,

and select Add Object → POU from the displayed menu.

Numbering default setting set content

(1) normal mode Clicking on an element selects that element.

(2) mobile mode Click and drag on the screen to move the screen.

(3) magnifying glass

tool

Window that launches the Magnifier tool.

Enlarges the display content at the cursor position in the window.

(4) current display

size

Displays the display size of the current program screen.

(5) Change display size

Change the display size.

Clicking the button will display the menu. Please select the changed

size.

If you choose , will show"enlarge"dialog box where you can enter

a magnification.

第二章 Quick startP68/262

2.6.4. Types of programming languages

STEP AS supports 6 programming languages ​ ​ according to the PLC international standard

IEC 61131-3.

1.Ladder program (LDprogram)

It is a graphical program created by placing ladder elements such as contacts and coils

on a network (circuit). Functions and function blocks with various functions are also

available.

2.Structured Text Programs (ST Programs)

A program created by describing expressions, conditional statements, etc. in text format.

It is based on the programming language PASCAL and is suitable for processing such as numerical

operations, data processing, conditional branching and repeated processing

3.Sequential function chart program (SFC program)

It is a graphical program created by placing elements such as steps, transitions, and

第二章 Quick startP69/262

actions in a top-to-bottom order. Suitable for processing that describes state transitions.

4.function block diagram program (FBDprogram)

A graphical program created by placing functions and function blocks on a network (circuit).

Unlike ladder programs, ladder elements such as contacts and coils cannot be placed.

5.instruction list (ILprogram)

A program created by writing assembler-like instructions sequentially in text format.

Ideal for high-speed processing and when memory usage needs to be limited.

6.Continuous Function Chart program (CFCprogram/page orientedCFCprogram)

It is a graphical program created by placing elements such as function blocks on the screen.

Elements can be placed freely on the screen, and the order of execution can be specified.

There are CFC programs that create programs on one screen, and page-oriented CFC programs

that create programs while switching screens called pages.

<CFC program>

第二章 Quick startP70/262

<Page-oriented CFC program>

2.6.5. variable

Variables are declared in the main window of the POU object for the program.

1. Standard data types

The following types can be used as standard data types in STEP AS.

type type scope size (bit)

true and

false

BOOL TRUE(1)and FALSE(0) 8

integer BYTE 0~255 8

integer WORD 0～65535 16

integer DWORD 0～4294967295 32

integer LWORD 0～264-1 64

integer SINT -128～127 8

integer USINT 0～255 8

integer INT -32768～32767 16

integer UINT 0～65535 16

integer DINT -2147483648～2147483647 32

integer UDINT 0～4294967295 32

integer LINT -263～263-1 64

integer ULINT 0～264-1 64

floating

decimal

point

REAL -3.402823e+38～3.402823e+38 32

floating

decimal

point

LREAL

-1.7976931348623158e+308～

1.7976931348623158e+308 64

string STRING (Number of

characters+1)×8

string WSTRING (Number of

characters+1)×16

第二章 Quick startP71/262

type type scope size (bit)

time TIME 0～4294967295 32

time LTIME 0～213503d23h34m33s709ms551us615ns 64

time TIME_OF_DAY

0(00:00:00:000)～

4294967295(11:59:59 PM: 999) 32

date DATE

0(1970-01-01)～

4294967295(2106-02-07) 32

date and

time

DATE_AND_TIME

0(1970-01-01,00:00:00)～

4294967295(2106-02-07,06:28:15) 32

User-defined data types of structures, enumerations, aliases, communities, etc. can also be used.
2. Array

Arrays can be used in STEP AS.

By using arrays, multiple data can be used as 1 variable.

Handy when you want to work with variables of the same type together.

Example: When a one-dimensional array a1 with 8 INT data is declared and used in an ST

program

When accessing a variable of an array, you can automatically check whether the index is within the
declared range. Please use bounds-checked POUs in POUs for automatic checking.
Using the auto-declare array wizard, you can declare variables of an array simply by entering the index and

primitive type.
3.subrealm type

Subrealm types can be used in STEP AS. Subrange types can specify ranges for values ​

​ of standard data types.

The following is an example of a string declaration of a variable of type subworld.

If you try to assign an out-of-scope value to a variable, you will get an error at compile

第二章 Quick startP72/262

time.

Subrealm types can also be declared in form format.

When accessing a subrange type variable of type DINT, UDINT, LINT, ULINT, you can automatically
check whether the value is in the declared range.

within. Please use the POU for range checking in the POU for automatic checking.
4. Structure/enumeration/alias/community

User-defined data types of structures, enumerations, aliases, and unions can be declared

through DUT objects.

To use these data types, add DUT objects to the project.

① Right-click the [Application] object in the navigation bar window, and select Add

Object → DUT in the menu.

Displays the Add DUT dialog. "name" is the name by which the type is accessed in the

program.

第二章 Quick startP73/262

②After selecting the type to be defined and entering the required information, click

the [Open] button.

A DUT object that defines the type of selection is added to the navigation bar window.

Example: adding a structure

③ Select the added object and enter the definition content in the main window.

The definitions and usage of each type are as follows.

a. structure

is an example of declaring structures struct1 and struct2. struct2 extends struct1.

To extend the declaration, check Extends in (2), and enter the extended declaration.

第二章 Quick startP74/262

declared as struct2The variables of the struct can be accessed1and struct2a member of.

Example: ST program to access members of structure struct2

You can use the BIT type as a member of a structure. Available values ​ ​ are TRUE (1) or FALSE (0).
The size of the BIT type is 1 bit.

b. Enumeration

is an example of an ST program that defines a declaration of enum enum1 and accesses the

members of enum1.

Variable iVar0 and variable iVar1 are assigned 0 and 3, respectively.

c. Aliases

Aliases allow users to assign user-defined names to type names. Please declare the variable

with the defined alias in the declaration section.

Here is an example of a declaration that defines an alias of alias1 of LINT and a declaration

part that declares a variable iVar0 of type alias1.

A variable iVar0 declared with type alias1 will be treated as a variable of type LINT.

第二章 Quick startP75/262

d. Community

This is an example of a declaration of a union that defines a union of union1 and an ST

program that accesses members of union1.

5. Constants

Constants can be used in STEP AS.

Constants are declared using the following syntax.VAR CONSTANT

constant name:type:=initial value;

END_VAR

type type content

BOOL BOOL TRUE(1), FALSE(0)

integer Types available

for numeric

values

Binary, Octal, Decimal, Hexadecimal

For non-decimal numbers, describe integer constants

after the base and # Examples: 14, 2#0101, 8#27, 16#34AB

Decimals

and

Exponents

REAL/LREAL Decimals and Exponents

Example: 1.4, 2.34e+008

time TIME
32bit matches IEC 61131-3time constant of

Syntax: t#, T#, time#, TIME#

Example: T#12ms, T#12h32mtwenty fours

time LTIME

64-bit time constant.

except TIMEIn addition to constants, the following units

can also be used

microseconds: m

Nanoseconds: ns

Syntax: LTIME#

Example: LTIME#123m456ns

time TIME_OF_DAY
time

Syntax: tod#, TOD#, time_of_day#, TIME_OF_DAY#

Example: tod#12:24:20.123

第二章 Quick startP76/262

type type content

date DATE
date

Syntax: d#, D#, date#, DATE#

Example: d#2018-01-01

datetime DATE_AND_TIME
datetime

Syntax: dt#, DT#, date_and_time#, DATE_AND_TIME#

Example: dt#2018-01-01-07:04:13

string STRING, WSTRING enclosed in single quotes

Example: 'Hello World'

6. Objects for declaring global variables

Global variables that can be used throughout the project can be used in STEP AS.

· list of global variables

is the object used to declare global variables.

Variables declared using the global variable list can be accessed using the object

name.global variable name of the global variable list.

Example: When accessing the variable of the object GVL of the global variable list in

the ST program

· List of persistent variables

is an object used to declare global variables for persistent variables.

Select "Persistent Variable" in Add Object.

7. Global variables

You can use global variables that are common across projects.

Global variables are declared in objects in the global variable list (GVL).

This section describes how to declare global variables and how to access declared

variables.

① Double-click the GVL object on the navigation bar window.

Displays the GVL screen in the main window.

② Declare variables in the global variable list (GVL).

第二章 Quick startP77/262

Example: declare a global variable g_iVar0 of type INT

The declared variable can be accessed from the program as "name.variablename"

Example: Assign value "5" to global variable g_iVar0

Variables declared before compilation can be imported and exported in XML format.
Right-click the object in the global variable list and select Properties. The Properties dialog box will appear,

open the Link to File tab screen, select the item to import or export, and enter the path to the file to import or

export in the Filename field.

8. Persistent variables

On reset, global variables can be used as persistent variables, which can hold values

​ ​ without initialization.

A persistent variable that can be used as a global variable is declared in the object

of the persistent variable list.

Only 1 object of persistent variable list can be registered.

① Right-click the [Application] object in the navigation bar window, and select Add

Object → Persistent Variable from the displayed menu.

第二章 Quick startP78/262

Displays the Add persistent variable dialog.

② Enter the name of the persistent variable list, and then click the [Open] button.

A "Persistent Variable List" object is added to the Navigation Bar window.

③ Declare variables in the persistent variable list.

Example: declare the global variable g_iVar0 of the persistent variable of type INT

The declared variable can be accessed from the program as "name.variablename".

Example: Assign value "6" to global variable g_iVar0 of persistent variable

第二章 Quick startP79/262

 Persistent variables for local use can be declared (VAR PERSISTENT RETAIN) in the declarations

section of each POU object.

 The instance paths of persistent variables declared in each POU object can be added to the

persistent variable list.

With the Declarations section of the Persistent Variables list selected, select Declarations → add all

instance paths.

9. Shorthand format function

You can enter fewer characters for variable declarations if you use the shorthand

formatting feature in the declaration section in string form.

Example: When declaring variables bVar0 and bVar1 of type BOOL using the shorthand format

function

Enter the variables bVar0 and bVar1 and press <Ctrl>+<Enter>.

"bVar0, bVar1:BOOL;" is automatically entered.

The pattern of an input example using the shorthand format function is shown below.

Strings described after a semicolon (;) are processed as comments.

Enter in short form press <Ctrl>key+<Enter>result after key

bVar0 bVar0:BOOL;

iVar0 iVar1 I 6 iVar0, iVar1: INT := 6;

strVar S 8 strVar: STRING(8)

wVar w; wVar comment wVar: WORD; // wVar comment

第二章 Quick startP80/262

2.6.6. Functions and function blocks

Functions and function blocks can be called from the program. Functions and function blocks

can be created using POU objects.

Functions and function blocks have the following differences.

function(FUN)

a) Can be used without a declaration in the declarations section.

b) There is only 1 output. But other outputs can be defined.

c) The values ​ ​ of output variables and internal variables are not saved.

function block(FB)

a) It can be used by declaring the instance in the declaration section.

b) There can be multiple outputs.

c) Save the values ​ ​ of output variables and internal variables.

d) Object-oriented definition using inheritance (EXTENDS), interface implementation

(IMPLEMENTS), access modifiers is possible.

1. Function

A function performs 1 output for 1 or more inputs. Functions can be used without declaring

variables.

For example, to create and call the function "ADD_SUB" that takes 3 INT-type parameters

as input, calculates (1st parameter) + (2nd parameter) - (3rd parameter) and outputs, follow

the steps below .

① Right-click the [Application] object in the navigation bar window, and select Add

Object → POU from the displayed menu.

The Add POU dialog is displayed.

第二章 Quick startP81/262

② Select "Function" and choose the input and description language for the name, return

type.

Name selects the function name. The return type selects the return value when the function

is executed. Description Language Select the programming language that describes the

processing of the function.

③ Click the [Open] button. A POU object with functions added. POU objects are displayed

as "Function Name (FUN)" in the navigation bar window.

第二章 Quick startP82/262

④ Handling of input functions.

Open the function's POU object and create the function. Declare the input variables of

the function in "VAR_INPUT". Assign the output of the function to the variable of the function

name.

At this point, the steps to create the function are completed. The steps to call the created function are
described later.

5 Open the POU object where you want to call the function, and call the function.

a)Functions can be called using the function name. Calling a function does not require

declaring variables.

Example: When calling from an LD program

Example: When calling from ST program

第二章 Quick startP83/262

b) Additional outputs can be defined for functions. Declare the variable "VAR_OUTPUT"

in the declaration section of the POU object that defines the function.

Example: The definition of the function "ADD_SUB" that outputs the variable iOut that

outputs the sum of the three input variables is added

(1).Call the "ADD_SUB" function in the LD program

(2).Call the "ADD_SUB" function in the ST program

2. Function block

A function block performs 1 or more outputs for 1 or more inputs. Using function blocks

requires declaring variables (instances).

For example, when creating a function block "FB_ADD" that takes 3 INT type variables as

inputs and outputs the sum of 3 parameters and calls an instance, follow the steps below.

① Right-click the [Application] object in the navigation bar window, and select Add

Object → POU from the displayed menu.

第二章 Quick startP84/262

The Add POU dialog is displayed.

② Select Function Block, enter a name and select a description language.

Name Select the function block name. Description Language Select the programming language

that describes the processing of the function block.

③ Click the [Open] button.

Added POU objects for function blocks. The POU object is displayed as "Function Block

Name (FB)" in the navigation bar window.

第二章 Quick startP85/262

④ The processing of the input function block.

Open the POU object of the function block to create the function block.

Declare the input variables of the function block in "VAR_INPUT". Declare the output

variables of the function block in "VAR_OUTPUT".

At this point, the steps to create the function block are completed. The procedure for calling the created
function block is described later.

⑤ Open the POU object of the calling source of the function block, and declare the instance

of the function block in the declaration part.

Declare the instance as a copy of the function block.

Instance name: declared in the form of a function block name.

⑥ Instance of the calling function block.

When an instance of a function block is called, the processing defined in the function

block is executed. Input variables and output variables can be accessed using

instance.variablename.

Example: call in LD program

第二章 Quick startP86/262

Example: call in ST program

2.7. input assistant

When writing code, inserting library or FB (function block), you can quickly prompt

existing variables or function blocks and insert them into the code.

2.7.1. Start input assistant

When writing code, you can passeditor→ input assistantOr press【F2】to open the "Input

Assistant" dialog box.

第二章 Quick startP87/262

As shown in the image above, it is possible to filter by category. Users can also search

directly by text:

2.7.2. coding assistant

If you know the partial name of the variable, you can type it, and the system will

automatically prompt, as shown in the following figure:

第二章 Quick startP88/262

At the same time, you can type a '.' dot to prompt for global variables.

For undeclared variables, STEP AS provides a shortcut function for automatic declaration,

as shown in the following figure, click Follow the prompts to complete the operation.

The assistant can be set through the menu Tools → Options, as shown in the following

figure:

第三章 System ConfigurationP89/262

第三章 System Configuration

3.1. Controller configuration

Double-click the device node in the navigation bar or double-click the device node on the

configuration page to open the configuration page of the corresponding device.

The generic device editor can include the following options:

 Communication settings:development systems and programmable devices (PLC)

configuration for connections between. in pureI/ONot available under device.

 Applications: List of applications on the controller.

 Backup and Restore: "Configuration for file transfers between the host" file system

and the device.

 log:PLCDisplay of log files.

 PLCset up:deal withI/OConfiguration:Which application, behavior in stop state,

update, bus cycle options, etc.

 users and groups:User management of the device at runtime.

 access permission:Access object and file permissions on the device.

 Task configuration:All input and output assignments.

 state:Specific device status and diagnostic messages.

 information:General equipment information(name, vendor, version, etc.).

3.1.1. Communication settings

Figure 3-1 Communication settings

Scan Network: Opens the Select Devices dialog, displaying a list of gateway configurations

and devices linked to those gateways. A target device can be selected from this list.

第三章 System ConfigurationP90/262

Figure 3-2 Select Device dialog box

Gateway:

Figure 3-3 Gateway selection

a. Add New Gateway: Opens the Gateway dialog to define a new gateway.

b. Manage gateways: Open the "Manage Gateways" dialog box to display all gateways. Their order

can be added or removed or changed.

c. Configure the local gateway: Open the "Gateway Configuration" dialog. A block driver can

be configured for the local gateway.

equipment:

第三章 System ConfigurationP91/262

Figure 3-4 Device selection

 Add Current Device to Favorites: Add the currently set device to the list of favorite

devices.

 Manage favorite devices:Open Favorites to display a list of all optimal devices. in this

dialog,You can add or delete entries, or change their order. The upper device is the

default.

 Rename current device:Open "Change Device Name" dialog.

 Blink valid device:Devices that support this feature will emit a flashing signal.

send response service:STEP ASSend five responses toPLCfor testing network connections,similar

topingFeatures. The packet will not be sent the first time and only after that. The range

of the packet depends onPLCcommunication buffer.

3.1.2. application

Get a list of apps on the device.

Figure 3-5 Device List

第三章 System ConfigurationP92/262

3.1.3. Backup and Restore

In the Generic Device Editor tabs, you can backup and save application-specific files on the

PLC by saving and reading compressed files.

Require:The communication settings connected to the device are correct. A backup of the

application is available on the PLC.

Figure 3-6 Backup and restore

Backup:You can read backup information from the device, create a backup file and save it to

disk, and save the backup file to the device.

Figure 3-7 Backup file

recover:Backup files can be loaded from the hard disk or device, and backup files can be

restored from the device.

Figure 3-8 Restoring files

To restore the backup file on the device:This command is available if at least one of the

components in the backup file is loaded and set to active on the current tab page. Used to

第三章 System ConfigurationP93/262

restore the state of the application on the device. The user interface is locked during the

restore process. You can also cancel the operation.

3.1.4. document

Files can be transferred between this unit and the PLC. If the communication settings are

correct and the PLC is online, then STEP AS will establish an automatic link with the PLC

for continuous file transfer.

Figure 3-9 File

You can set a new file path, perform operations such as deletion and update, and copy the

selected files and directories to other file systems. If the file does not exist in the

destination folder, then the file will be created. If the file has already been created and

is not write-protected, it will be rewritten.

3.1.5. users and groups

Depending on device support, user accounts and user groups can be defined. In combination

with the "Acquisition rights" tab, control objects and files can be acquired in Runtime.

Require:The controller has user management and has login information to be able to log in

to the controller.

第三章 System ConfigurationP94/262

Figure 3-10 Users and groups

Add, import, edit, and delete operations can be performed for both users and groups.

3.1.6. PLC settings

Basic PLC configurations can be implemented, such as handling inputs and outputs and bus cycle

tasks.

Figure 3-11 PLC configuration
I/O processing application: The application responsible for IO processing.

PLC settings:

a. Update IO when stopped: If checked, the values ​ ​ of input and output channels will

第三章 System ConfigurationP95/262

be refreshed even if the PLC is stopped. If the watchdog detects a fault, the output will

be set to a predetermined value. Otherwise the input and output channel values ​ ​ will not

be refreshed.

b. Output behavior when stopped: You can keep the current value, set all outputs as default,

and execute the program.

Always update variables:

Figure 3-12 Update variable settings

The global setting defines whether or not tasks update I/O variables on bus cycles. The

I/O variable settings of these modules and subordinate modules are valid as long as "invalid"

is defined in the update setting.

disabled:Will only update if used in a missionI/Ovariable.

Enable1:If not used in other tasks,I/OVariables are updated in the bus cycle task.

Enable2:On every bus cycle the task updates all variables, whether they are used or

mapped to input and output channels.

Bus cycle task: The task that controls the bus cycle, by default, has entered the task of

the device description. By default, the bus cycle setting of the higher-level bus device (using

the cycle setting of the upper-level bus) applies, and the device tree is scanned up for the

next useful bus cycle task definition. Strictly heed the following tips:

(1) Before selecting the setting <unspecified> for the bus cycle task, you should pay attention

to the following: '<unspecified>' means that the default setting of the device description

file takes effect. Therefore, you should check this description. Using the task with the

shortest period can be defined as the default, but using the task with the longest period

can also be defined

(2) For fieldbus, a fixed cyclic matrix is ​ ​ required to ensure a deterministic behavior.

For this reason, do not use the "free run" type in a bus cycle task.

3.1.7. access permission

On the options page of the generic device editor, you can define access rights for PLC objects.

Requirement: User management must be set up on the PLC.

第三章 System ConfigurationP96/262

3-13 User Privileges

3.1.8. log

The PLC log can be viewed in the Generic Device Editor, which lists events logged on the target

system. Mainly include the following:

 Matters during system startup and shutdown (component loading, and versioning)

 Initiate the download and loading of the application

 custom entry

 I/ODriver's log entries

 Log entries for the data server

Figure 3-14 Log list

The severity of events can be divided into 4 categories: Information, Warning, Error,

Exception. The toolbar above the list can be shown or hidden. The button for each category

shows the number of log entries for the related category.

第三章 System ConfigurationP97/262

3.1.9. Task configuration

A sub-dialog of the device editor shows a table of inputs and outputs and their assigned tasks.

This information is only visible after the application code is compiled and generated. It

is used for troubleshooting as it shows multiple input locations and output locations with

different priority tasks. Using through multiple overrides can result in undefined values.

I/O Channels: Inputs and outputs of all related devices. This display corresponds to the

I/O mapping in the Device Editor dialog. By double-clicking an input or output the associated

I/O map editor can be opened.

Tasks: Displays the tasks defined in the task configuration. The title contains the task

name and priority.

3.1.10. state

The generic device editor tabs display status information such as 'running' and 'stopped',

as well as specific diagnostic messages for individual devices, as well as information used

by the internal bus system.

第三章 System ConfigurationP98/262

3.1.11. information

The tabs of the generic device editor show general information in the device description

file, such as: name, vendor, class, version, serial number, description. The information items

of the device involved in this article are the display of general information in the device

description file.

3.1.12. display language

STEP AS supports Chinese and English. The language of the initial setting is the same as

the language used by the OS. To use a language different from the OS, please make the display

language setting. When making a language change, STEP AS needs to be restarted.

第三章 System ConfigurationP99/262

1. Select Tools-->Options from the menu. Displays the Options dialog.

2. Click "Language Settings" from the category window to display the "Language Settings"

screen.

3. Select the language in the User Interface Language-->Specify Language column.

4. Click the [OK] button.

§ The "Options" dialog closes. The language will not be switched at this time. Exit STEP AS and restart STEP
AS. The selected language takes effect after STEP AS is started.

3.1.13. version display

You can view the version numbers of components and devices such as software and compilers.

1. Select Help-->About in the menu bar. The "About" screen is displayed.

2. Double-click the device in the navigation bar and click the information on the pop-up

device information page to view the device version.

第三章 System ConfigurationP100/262

3.1.14. online help

See help documentation.

1, Select Help --> Contents or Help Documentation in the menu bar and click the "Target"

item in the lower left corner. Displays the Help Documentation Contents page.

2, Select Help --> Index or Help Documentation in the menu bar and click the "Index" item

in the lower left corner.

Display the help document index page, double-click the keyword on the left to display the

corresponding content, or search for the keyword in the search box.

第三章 System ConfigurationP101/262

3. Select Help --> Search or Help Documentation in the menu bar and click the "Search" item

in the lower left corner.

Display the help document search page, and search for keywords in the search box to display

the corresponding content on the right.

第三章 System ConfigurationP102/262

3.2. EtherCAT configuration

STEP AS supports two EtherCAT master stations, one is the default EtherCAT master station,

which has more complete functions and is supported by the SC30 controller. One is the autonomous

EtherCAT master station, which is optimized for the small controller SC20, with better

performance and less resource occupation.

Introduction to EtherCAT Bus

EtherCAT is a high-performance, low-cost, easy-to-apply, and flexible topology industrial

Ethernet technology that can be used in industrial field-level ultra-high-speed I/O networks,

using a standard Ethernet physical layer, transmission media twisted pair or optical fiber

(100Base-TX or 100Base-FX). The EtherCAT system consists of a master station and a slave

station. The master station only needs a common network card, and the slave station needs

a dedicated slave station control chip, such as: ET1100, ET1200, FPGA, etc. It has the following

features:

(1) One network to the end, the protocol processing goes straight to the I/O layer, and

a single system can cover all devices

(2) No need for any lower sub-bus, On the fly message transmission

(3) Transmission rate: 100 Mbit/s (fast Ethernet, full duplex mode)

(4) Distributed node synchronization <1us

(5) The protocols supported above the link layer are as follows:

CoE (CANOpen over EtherCAT), CANOpen application protocol based on EtherCAT, can be

connected to servo drive protocol (Cia 402) or IO protocol (Cia 401)

SoE (SERCOS over EtherCAT), servo drive profile according to IEC 61800-7-204

EoE (Ethernet over EtherCAT)

FoE (File over EtherCAT) File transfer over EtherCAT, supports firmware upgrade.

Both SC system controllers support the above features. STEP EtherCAT bus servo supports the

above CoE protocol.

For SC series controllers, STEP AS has already configured the hardware of EtherCAT master

by default.

For applications based on the EtherCAT CoE protocol, it is necessary to configure "process

data PDO" and "service data SDO". The former PDO is arranged to be sent and received

periodically, and the latter SDO is only communicated when necessary (usually used to transmit

configuration parameters) .

3.2.1. Autonomous EtherCAT Master Configuration

(1) Master station configuration

第三章 System ConfigurationP103/262

parameter Parameter Description

sync offset

This value allows the offset of the synchronization interrupt to be
corrected within the PLC cycle of the EtherCAT slave. Usually the
task cycle of the plc starts 20% earlier than the slave
synchronization interrupt. This means that the plc task lags 80% of
the cycle time and no data is lost.

Automatically restart the slave When this option is activated, the master will try to restart the slave
immediately after the communication ends.

Master mode (first DCSlave as reference time) Take the first DCThe system time of the slave is used as the
reference time.

Slave mode (software time) Take A in the controllerRMThe system time is used as the reference
time.

Slave Mode 2(FPGAtime) Take F in the controllerPGAThe time is used as the reference time
for the synchronization of the bus axis and the pulse axis.

(2) Bus cycle task

Typically, for each IEC task, the input data used is read at the beginning of each task

(1), and the written output data is transferred to the I/O driver (3) at the end of the task.

The implementation in the I/O driver is decisive for the further transfer of I/O data. Therefore,

the implementation is responsible for the time frame and specific time that the actual

transmission takes place on the corresponding bus system.

The PLC's bus cycle task can be defined globally for all fieldbuses in the PLC settings.

However, for some fieldbuses, you can change this setting independently of the global settings.

The task with the shortest cycle time is used as the bus cycle task (setting: not specified

in PLC settings). In this task, messages are usually transmitted on the bus.

Other tasks just copy the I/O data in the internal buffer, which is only exchanged with

the physical hardware in the bus cycle task.

第三章 System ConfigurationP104/262

(3) Status

Provides status information (eg 'start' 'stop') and device-specific diagnostic information

on the network card and internal bus system used.

3.2.2. Default EtherCAT Master Configuration

(1) General configuration

第三章 System ConfigurationP105/262

Figure 3 - EtherCATMaster Device Configuration

Classification parameter Parameter Description

Automatic

configuration of

master/slave

If this option is activated, the main

configuration of the master and slave will

be done automatically according to the

description in the device description

file. In this case, the FMMU/SYNC setting

dialog will not be displayed.

EtherCAT NICsset up

Destination address

(MAC)

The MAC address of the EtherCAT network

member that should accept the message. If

the "Broadcast" option is checked, the

address does not have to be specified.

Source address (MAC)

The MAC address of the PLC, the name of the

network card, i.e.: PLC (target system):

Select one of the following options:

1. Select network by MAC

2. Select network by name

network name EtherCAT NICs are selected by their

specific network names, not MAC addresses.

Select network by MAC

Select which network card is used as the

EtherCAT network card by the MAC address

of the network card. for SC30Controller,

only 1 can be selected2-34-56-78-9A-BC.

Select network by name
Select which network card to use as

EtherCAT network card by network name, for

SC30Controller, only eth can be selected0.

Enable redundancy SC20, SC30The controller does not support

redundancy.

第三章 System ConfigurationP106/262

Classification parameter Parameter Description

distributed clock

main cycle time

Refers to the time period after which new

data packets can be transmitted. If the

'Distributed clock' function is

activated, the master cycle time will be

transferred to the slave clock. This

enables precise synchronization of data

exchange, which is especially important

when synchronizing actions are required in

distributed processes (eg multiple servo

axes performing simultaneous linkage

tasks). Therefore, a very accurate clock

base with signal jitter less than 1

microsecond can be obtained within the

network range.

sync offset

This value allows the offset of the

synchronization interrupt to be corrected

within the PLC cycle of the EtherCAT slave.

Normally, the task cycle of the PLC starts

20% later than the slave synchronization

interrupt. This means that the PLC task

lags 80% of the cycle time and no data is

lost.

Sync window offset
Activating this option allows monitoring

of the synchronization status of the

slaves.

Sync window

The time to monitor the synchronization

window. If all slave synchronizations fall

within this time window, the variable

xSyncInWindow (IODrvEtherCAT) is set to

TRUE, otherwise FALSE.

Options

Use LWR instead

ofLWR/LRD

Activating this option will use combined

read/write commands (LRW) instead of

separate read (LRD) and separate write

(LWR) commands.

Enable messages for

each task

When this option is activated, the read and

write commands for processing input and

output information will be completed by

different tasks.

Automatically restart the

slave

When this option is activated, the master

will try to restart the slave immediately

after the communication ends.

(2) Synchronization unit assignment

This tab shows all the slaves plugged under a specific master and assigned to the

synchronization unit.

第三章 System ConfigurationP107/262

By default, the first slave station is used as the reference clock of the current network

segment, which has strong real-time performance; the master station clock can also be used

as the reference clock, and the DCSync of the EtherCAT master station device object can be

used as the reference clock.ToMasterproperty is set to TRUE. .

(3) Bus cycle task

Typically, for each IEC task, the input data used is read at the beginning of each task,

and the written output data is transferred to the I/O driver at the end of the task. When

Softmotion EtherCAT is used, the reading and writing of messages will be performed at the

beginning of the task.

The PLC's bus cycle tasks can be defined globally for all fieldbuses in the PLC settings.

This setting can also be changed independently of the global settings. Usually the task with

the shortest cycle time is used as the EtherCAT bus cycle task.

Other tasks just copy the I/O data in the internal buffer, which is only exchanged with

the physical hardware in the bus cycle task.

(4) Status

Provides status information (eg 'start' 'stop') and device-specific diagnostic information

on the network card and internal bus system used.

第三章 System ConfigurationP108/262

3.2.3. Autonomous EtherCAT slave configuration

The basic settings of the EtherCAT slave are configured in this option. Device description

files are preset to basic settings.

(1) Common settings

第三章 System ConfigurationP109/262

The parameters are explained as follows

Classification parameter Parameter Description

address

auto increment address

Auto-incrementing address (16 bits), determined

by the position of the slave in the network. This

address is only used at startup, when the master

is assigning the EtherCAT address to the slave.

For this purpose, when the first message passes

through the slave, each slave that passes the

message increases its auto-increment address by

1. The slave with address 0 finally receives the

data. Possible input values ​ ​ are '-8'.

EtherCAT address

The final address of the slave, assigned by the

master at startup. This address is independent

of the actual location in the network.

additional

Start expert setup

If this option is activated, additional expert

settings for startup checks and timeouts will be

effective and the Advanced Process Data dialog

will be activated. Note, however, that for

standard applications the auto-configuration

mode, which is active by default on the master,

is sufficient, so it is not necessary to use the

'advanced settings'.

optional

If a slave device is defined as 'optional', no

error message will be created in case the device

does not exist in the bus system. To activate

this option, a station address must be stored in

the slave device, so the 'station alias' address

must be defined and written in the EEPROM. And

this option is only valid if the 'Auto-configure

master/slave' option in the EtherCAT master

settings is activated and if the EtherCAT slave

supports this function.

distributed clock
select DC

The drop-down menu provides all the settings for

distributed clocking provided by the device

description file.

Enable If the "Distributed Clock" function is

第四章 programming basicsP110/262

Classification parameter Parameter Description

activated, it is displayed in the "Sync Unit

Cycle"(µs)”The data exchange cycle time of the

area will be determined by the master station

cycle time. Therefore, the master clock can

synchronize the data exchange within the

network.

Sync0

Enable Sync0

If this option is activated, the synchronization

unit (Beckhoff) of 'SYNC0' is used. A

synchronization unit describes a series of

synchronously exchanged process data.

sync unit cycle

If this option is activated, the master cycle

time multiplied by the selected factor will be

used as the slave synchronization cycle time.

"Cycle Time(µs)”field displays the currently

set cycle time.

User defined

If this option is activated, the desired time in

microseconds can be entered in the "Cycle Time

(µs)" field.

Sync1

Enable Sync1

If this option is activated, the synchronization

unit (Beckhoff) of 'Sync 1' is used. A

synchronization unit describes a series of

synchronously exchanged process data.

sync unit cycle

If this option is activated, the master cycle

time multiplied by the selected factor will be

used as the slave synchronization cycle time.

"Cycle Time(µs)”field displays the currently

set cycle time.

Custom

If this option is activated, the desired time in

microseconds can be entered in the "Cycle Time

(µs)" field.

start check

By default, when the system starts, the vendor

ID and product ID are automatically checked

against the current configuration settings. If

a mismatch is detected, the bus stops and no

further action is taken. This setting is to avoid

downloading the wrong configuration.

This option can be deselected here to turn off

checking.

time out

SDO access When the system starts, the SDO list is sent.

I -> P
Transition from 'initialization' to

'pre-operational' mode.

P -> S / S -> O

Transition from 'Pre-Operation' to 'Safe

Operation' mode or from 'Safe Operation' to

'Operation' mode.

DC cycle unit control

Select the option defined for the distributed

clock function that should be assigned to the

local microprocessor. The control functions are

already done in register Ox980 of the EtherCAT

slave: possible settings: cycle unit, latch unit

0, latch unit 1.

watchdog

set multiplier
The watchdog PDI and SM get their cycles from the

local terminal and are accepted by the watchdog.

Set PDI watchdog

The watchdog is triggered if the PDI (Process

Data Interface) communication time with the

EtherCAT slave exceeds the set and activated PDI

watchdog time.

第三章 System ConfigurationP111/262

Classification parameter Parameter Description

Set SM watchdog

If the cyclic EtherCAT process data

communication is longer than the set and active

SM (Synchronous Management) watchdog time, the

watchdog will be triggered.

station alias

activation

If the setting "Optional" is not activated, this

setting is only valid if it is explicitly

supported by the slave device description file.

It allows direct assignment of alias addresses

for slave addresses independent of their

physical location on the bus. This checkbox is

disabled if the option 'optional' is activated.

writeEEPROM

This command is only visible in online mode. It

allows to write the defined address to the

slave'sEEPROM. If the slave does not support it,

this command has no effect and the slave does not

work as 'optional slave'.

real address

This column is only visible in online mode and

displays the actual address of the slave. It can

be used to check 'writeEEPROM' whether the

command was successful.

(2) FMMU/Sync

(3) Expert process data

Only used in the EtherCAT Slave Configuration Editor, and when the Slave Options Expert

Setup Mode is activated. In addition, PDO configuration can also be performed here.

第三章 System ConfigurationP112/262

(4) Process data

Displays process data for the inputs and outputs of slaves, each of which is defined by

its name, type and index in the device description file. The selected inputs (readable) and

outputs (writable) in the device will be available as PLC outputs and inputs in the "I/O

Mapping" dialog. PLC project variables can be mapped.

In order to modify the current selection, the mouse must be clicked on the check box in front

of the currently selected data to cancel the selection, after which other items can be selected

(5) Startup parameters

Here it is possible to define device parameters for special slaves, which can be transferred

by SDOs (Service Data Objects) or IDNs at system startup. This dialog only appears if the

第三章 System ConfigurationP113/262

device supports 'CAN over EtherCAT' or 'Servodrive over EtherCAT.'. The object dictionary

containing the necessary data is provided by the EtherCAT XML description file, or by the

EDS file referenced by the EtherCAT XML description file.

(6) IO mapping

For each EtherCAT slave, an implicit instance of type "ETCSlave" is established as soon as

the device is inserted into the device list. The instance name is exactly the same as the

device name used in the device list. Valid information for this instance is also displayed

in the I/O Mapping Dialog dialog box. The application can use the slave instance to obtain,

switch and check the slave status at runtime.

Added slaves are automatically mapped to variables.

第三章 System ConfigurationP114/262

IO mapping provides the ability to specify engineering variables for EtherCAT input or

output. Thus the PLC connected to the EtherCAT slave can be controlled by the application

When adding or deleting 402 axes, the variable mapping will be updated automatically.

(7) Status

Provides status information (eg 'start' 'stop') and diagnostic information for a specific

device.

(8) Online CoE

This dialog is only available from the EtherCAT Slave Configuration Editor tab if the expert

settings for the slave are enabled and the application is logged into the device. It shows

the status information of slaves and function blocks transferring files to slaves using the

EtherCAT bus.

Figure CoE

第三章 System ConfigurationP115/262

3.2.4. scan device

Devices can be scanned using the "Scan Devices" in the context menu of the navigation bar.

Scan Devices, only available if the application is logged in, initiates a scan of the hardware

environment currently connected to the PLC. This means detecting and viewing the hardware

configuration in one dialog and enabling the user to map this configuration directly into

the device tree in the project.

In each case, a scan is automatically established before the connection to the PLC, and

is automatically closed after the scan is complete. Therefore the gateway connection must

be properly configured and the PLC must be running before the scan can take place. If the

scan requires library functionality, log in at least before the first scan in order to get

the library download.

If an EtherCAT master module has been added, scanning for devices will result in a list

of all valid EtherCAT slaves. As shown in the figure below, the device can be copied to the

project.

Figure scanning equipment

3.2.5. EtherCAT common faults

Common faults of EtherCAT master:

1. Fieldbus synchronization lost SMC_DI_FIELDBUS_LOST_SYNCRONICITY

a) The EtherCAT master distribution clock offset setting is not reasonable enough.

第三章 System ConfigurationP116/262

Can be set to 40%~50%.

b) The controller and servo drive use common network cables. It is recommended to

use Category 5e twisted pair shielded cable.

2. Stop SMC_FB_WASNT_CALLED_DURING_MOTION during axis motion

a) The task attached to the EtherCAT master and the task attached to the program that

controls the axis motion are not the same task

b) The function block that controls the axis movement is not called periodically in

the task

3. After the program starts, the EtherCAT master device displays a red triangle and cannot

enter the OPERATIONAL state

a) The name of the network card selected by the EtherCAT master is incorrect. For

the SC30 controller, only eth0 can be selected as the EtherCAT network card

b) The network cable is inserted wrongly or there is no network cable inserted

4. There is an error in configuring the servo or remote IO module during the startup of

the EtherCAT master

a) SDO configuration PDO process error, please refer to 3.4.4 CANopen communication

failure

b) Other error reasons can be analyzed according to STEP ASlog log

3.3. Modbus serial port configuration

3.3.1. Add Modbus device

STEP AS supports independent modbus communication, the controller can be used as a master

station and a slave station, and general slave stations, STEP frequency converters and

controller slave stations can be added in the new project wizard.

The number of Modbus buses supported by different controllers is different, and the number

of supported buses is displayed on the controller configuration page.

第三章 System ConfigurationP117/262

The controller uses different buses when it acts as a master station and a slave station,

so when adding a Modbus device, the program will judge the number of buses currently occupied.

If the number of buses supported by the controller exceeds the number of buses supported by

the controller, a warning that the serial port is occupied will be given.

The project structure after adding one general modbus slave station and two STEP inverters

is shown below.

第三章 System ConfigurationP118/262

Modbus serial communication supports the standard ModbusRTU protocol, can be configured as

the master station, and supports 9600, 115200 and other baud rates.

The range of variables that the master can access is defined as follows:

(1) All bit variable operations (01 02 05 0f) can read and write %MX0.0-%MX8191.7 a total

of 65536 bit variables;

(2) All register variable operations (03 04 06 10) can read and write %MW0-%MW65535, a total

of 65536 register variables

3.3.2. Modbus master configuration

Double-click the master station to enter the Modbus parameter configuration interface,

including the settings of communication port, baud rate, parity bit, data bit, stop bit,

transmission mode, and frame interval.

Modbus master configuration parameters:

configuration item Features

The port number The master physical connection selects the port.

baud rate rate of communication.

parity The verification method of communication frames.

data bits The actual data bits contained in the communication frame.

stop bit Identifies the last bit of a single packet when communicating.

transfer mode RTU.

第三章 System ConfigurationP119/262

frame interval
The time interval that the master station waits between receiving

the last response data frame and the next request data frame.

3.3.3. Modbus slave configuration

Double-click the slave station to enter the communication parameter configuration of the slave

station, including the slave station address, timeout time, and slave station enable variable

configuration.

Modbus slave configuration parameters:

configuration item Features

Slave station number Identifies the slave station number, range 1~247.

overtime time After the master station sends, if the time exceeds this time,

the master station reports the receiving timeout.

Slave Enable Variable Program to enable the slave station, start sending communication

frames to the slave station, ONefficient.

Configure the slave channel, including adding, deleting, and editing operations.

Each channel represents an independent Modbus request.

After clicking the "Add" button, the channel setting page will pop up. After the page setting

is completed, click "OK" to add the corresponding channel. Click the "Cancel" button to

terminate the channel establishment.

第三章 System ConfigurationP120/262

configuration item illustrate

access type

Read coil status (function code 01)

Read input status (function code 02)

Read holding register (function code 03)

Read input register (function code 04)

Write a single coil (function code 05)

Write a single register (function code 06)

Write multiple coils (function code 15)

Write multiple registers (function code 16)

trigger
Loop Execution: Periodically

Triggered Requests

Cycle Time: Set the time to execute

again

Level Trigger: Trigger when

programming is changed

trigger variable (SM): set trigger

SMelement,

After the trigger is successful, the

element is automatically reset

number of retransmissions

This time a communication failure occurs and the frame returned by the

slave station is not obtained, and the retransmission is performed

according to the number of retransmissions.

Notes A short text area that can describe the data

read register

starting address Start position of the read register

length Number of registers read

error handling
keep last value: keep the data at the last valid value

set to 0: zeros all values

write register

starting address Write register start position

length write register length

"The valid range of the "length" parameter depends on the following function codes:
function code type access Number of registers

01 Read coil status 1~2000
02 read input status 1~2000

第三章 System ConfigurationP121/262

03 read holding register 1~125
04 read input register 1~125
05 write a single coil 1
06 write a single register 1
15 write multiple coils 1~1968
16 write multiple registers 1~123

The slave channel interface after adding the channel is as follows:

 Click the "Edit" button to edit the selected channel. Click the "OK" button to update

the channel settings or click the "Cancel" button to keep the original settings.

 Click the "Delete" button to delete the selected channel.

 When creating STEP inverter, the system will automatically add several commonly used

channels.

第三章 System ConfigurationP122/262

Graph channel configuration item

In addition, when using the project wizard to create a new project, the system will

automatically map the added channel to the corresponding global variable in the ModbusGVL

file. The mapped variables are consistent with the order added by the inverter. For example,

CtrlWord[0] corresponds to the slave _STEP_inverter Map variable; CtrlWord[1] corresponds

to the map variable of slave _STEP_inverter_1.

Graph mapping variables

Graph mapping variables

3.3.4. Modbus common faults

Major failure of Modbus master connecting to Modbus slave:

(1) The configuration of the Modbus master station and the Modbus slave station are

inconsistent, resulting in the failure to establish the communication between the master

station and the slave station

(2) The Modbus master station accesses the illegal address of the Modbus slave station and

returns an error response.

第三章 System ConfigurationP123/262

(3) The Modbus master station operates the Modbus slave station to write the register, but

the Modbus slave station only supports read and not write operations, and the Modbus master

station will receive the error response returned by the Modbus slave station.

error response frame

Error response: slave address + (command code + 0x80) + error code + CRC check

This error frame applies to all operation command frames.
serial
number Data (byte) meaning number of bytes Number of registers

1 slave address 1 byte value 1~247

2 Command code+0x80 1 byte wrong command code

3 error code 1 byte 1~4

3.3.5. Modbus TCP configuration

Visual configuration is not currently supported.

The ModbusTcpSlave function block provided by our company can be used for communication.

3.4. CANopen configuration

The configuration of CANopen mainly includes the configuration of CANbus, CANopen master

and CANopen slave. CANbus is added by default when adding a CANopen master device using the

wizard and configuration. For details on how to add devices, refer to the chapter on device

configuration.

SC30 controller supports CANopen communication protocol standard DS301.

The relationship between CANopen transmission rate and transmission distance is as follows:

baud rate (bps) Maximum bus length (m)

1M 40

500K 110

250K 240

125K 500

100K 1300

50K 3300

20K 6600

10K 13000

3.4.1. CANbus configuration

CANbus is the top configuration of every CAN bus configuration in the device tree. A CANopen

master can only be inserted under a CAN bus node and then a slave, ie a CANopen remote device,

can be added.

Open the CANbus configuration page, as follows:

第三章 System ConfigurationP124/262

Figure CANbus configuration page

parameter Parameter Description

The internet Represents CAN peripheral index, default CAN0

Baud rate (kbits/s) Communication baud rate

Notice:
To prevent the loss of CAN frames, make sure that the cycle time is set correctly by the following variables: the
baud rate currently in use, the number of bus frames, and the heartbeat time setting, node guarding or
synchronization. These times should be integer multiples of the cycle time!

3.4.2. CANopen master configuration

Classification parameter Parameter Description

Overview
Node ID

The node ID provides the CANopen manager with a
one-to-one correspondence to the group number of
modules, and the ID value is between 1 and 127. ID
must be a decimal number.

Automatic start of CANopen manager If this option is activated, CANopen management
starts automatically when all slaves are ready (to

第四章 programming basicsP125/262

Classification parameter Parameter Description
OPERATIONAL mode). If the option is not activated,
management must be initiated through the application,
using the CiA405 NMT function block to handle this.

Optional slave polling

If the slave does not answer while the script is queued
then it will send every minute until it responds
successfully. Permanent polling of slaves will result in
an increase in the bus cycle time which may affect the
application (especially for motion applications). To
avoid this the behavior can be stopped. If a polling is
stopped the slave will only be activated after sending a
start telegram.

start slave
This option is used in CANopen management to start
slaves. If stopped, the slave needs to be restarted via
the CiA405 NMT function block in the application.

NMT start all (if possible)

If the option "Start slaves" is activated the CANopen
management will start all slaves with the command
"NMT Start All". The "NMT Start All" command does
not start when the slave is not ready. In this case the
CANopen management will start each slave
individually. "NMT Start All" is only guaranteed to
start if there are no optional slaves in the project.

NMT misbehavior

restart the slave: If a guard event occurs all slaves
will be automatically restarted by the stack (NMT reset
+ SDO configuration + NMT start)
stop slave: If a guard event occurs all slaves will stop.
The slave must be restarted through the application by
using the CiA405 NMT function block.

heartbeat

Enable heartbeat generation

If this line selection is activated, the master will
continuously send heartbeats according to the
internally defined "heartbeat time". If a new slave
heartbeat function is added, their heartbeat action will
be automatically activated and configured, that is, the
node-IDIt is automatically set in the management
configuration, and the heartbeat interval is
automatically multiplied by a factor1,2.
ifCANopenThe heartbeat creation in the management
is not activated, then the node protection will be
activated in the slave(with life time factor10and
a100msguard time). NoticeCANopen (Slaves)The
device is happy to create a configuration as a heartbeat.

Node ID A unique identifier (1 - 127) generated by heartbeats
on the bus.

Generation time (ms) Defines the internal heartbeat time in milliseconds.

Synchronize

Enable synchronous generation
If this option is enabled (default: disabled), the
CANopen manager will send synchronization
messages.

COB-ID(Hex)
The communication object identifier, which identifies
the synchronization message. Possible values: [1,
2047].

Cycle period (µs) How many microseconds to send sync messages.
Possible values: [100, 232-1].

Window length (µs)

Synchronized PDO's with time window length in
microseconds [1,232-1] or 0 If not applicable,
synchronized PDO's will be sent concurrently after the
synchronization message.

Start synchronous consumption
If this option is enabled (default: disabled), another
device will send a sync message and CANopen
management will receive it.

第三章 System ConfigurationP126/262

Classification parameter Parameter Description

time

Enable time generation If this option is enabled (default: disabled),
CANopenManager will send TIME messages.

COB-ID (Hex)
The communication object identifier, which identifies
the time message. Standard value: [0, 2047], default
value is 100.

Generation time (ms)
The millisecond interval at which timestamp messages
are sent. Must be an integer multiple of the task cycle
time. Possible values: [0, 65535].

Note: The runtime system must support high resolution time, otherwise an error message will be generated

3.4.3. CANopen slave configuration

Classification parameter Parameter Description

Overview

Node ID

The Node ID is used to define a unique CANopen node and is between

1 and 127 according to the module's local setting. ID must be

a decimal number.

SDO channel

(1/1efficient)

This button opens a dialog where the SDO channel can be defined.

Service data types (SDOs) allow access to arbitrary entries in

the CANopen object dictionary. An SDO creates a channel

peer-to-peer data transfer between two devices (SDO server and

client).

Enable expert settings Display the "SDO Channel" configuration item.

optional equipment
If this option is activated then the slave device is optional

and not forced to start by the CAN network.

Uninitialized

If this option is activated (visible in the dialog depending

on the target system), the master will activate the node

immediately without sending configuration SDOs. (However, the

SDO data will be created and saved by the controller).

reset node

Before downloading the configuration or the slave

configuration, the CANopen communication configuration

parameters of the slave will be reset to default values.

第三章 System ConfigurationP127/262

Node guard

Enable Node Guard

If this option is activated, a message will start

with"Protection Time"The interval to be sent to the module

(microseconds, default 100). If the module does not follow the

given"Protect COB-ID"(communication object definition) to send

data, then the CANopen management will"Life Time Factor"Resend

or until the module responds. If no module responds, the module

will be marked as "unavailable".

Enable heartbeat

generation

If this option is activated, this module will"Heartbeat

generation time (ms)"The definition in send heartbeat, which

defaults to 10 if there is no other default setting in the device

configuration file or if it defaults to 0.

Heartbeat consumption

(1/1efficient)

This button opens a dialog to define the variables that the slave

needs to protect, which can be defined.

Emergency situations
enable emergency

If this option is activated, the module will send an emergency

message through the COB-ID interval until an internal error

occurs. This information can be recovered by the functions

provided by the CiA405 library (RECV_EMCY_DEF, RECV_EMCY)

function library.

COB-ID Communication object definition, defining urgent messages.

time

Enable time generation
If this option is enabled (default: disabled), CANopenManager

will send TIME messages.

COB-ID (Hex)
The communication object identifier, which identifies the time

message. Standard value: [0, 2047], default value is 100.

Generation time (ms)

The millisecond interval at which timestamp messages are sent.

Must be an integer multiple of the task cycle time. Possible

values: [0, 65535].

check on reboot

If this option is activated then information will be received

from the CANopen slave firmware and compared with the

information in the EDS file. If a configuration does not match

then the configuration will stop and the slave will not start.

Note: If a device with heartbeat function is plugged in, then its heartbeat settings will be automatically set according
to the master's configuration

3.4.4. CANopen communication failure

1) General troubleshooting steps

1) Check the wiring

2) Check the baud rate

3) Check the matching resistance

4) Other

2) Communication fault code

Code ID Code function description

0503 0000 Trigger bits are not alternately changed

第三章 System ConfigurationP128/262

0504 0000 SDO protocol timeout

0504 0001 Illegal or unknown Client/Server command word

0504 0002 Invalid block size (Block Transfer mode only)

0504 0003 Invalid serial number (Block Transfer mode only)

0503 0004 CRC error (Block Transfer mode only)

0503 0005 memory overflow

0601 0000 Object does not support access

0601 0001 Attempt to read write-only object

0601 0002 Attempt to write read-only object

0602 0000 Object does not exist in object dictionary

0604 0041 Object cannot be mapped to PDO

0604 0042 The number and length of mapped objects exceeds the PDO length

0604 0043 General parameter incompatibility

0604 0047 General device internal incompatibility

0606 0000 Object access failed due to hardware error

0606 0010 Data type mismatch, service parameter length mismatch

0606 0012 Data type mismatch, service parameter length is too large

0606 0013 Data type mismatch, service parameter length is too short

0609 0011 subindex does not exist

0609 0030 Out of range of values ​ ​ for parameter (on write access)

0609 0031 The write parameter value is too large

0609 0032 Write parameter value is too small

0609 0036 The maximum value is less than the minimum value

0800 0000 general error

0800 0020 Data cannot be transferred or saved to the app

0800 0021 Data cannot be transferred or saved to the application due to local control

0800 0022 Data cannot be transferred or saved to the app due to the current device state

0800 0023
The object dictionary generates an error dynamically or the object dictionary does
not exist (for example, the object dictionary is generated from a file, but an error
occurs due to a corrupt file)

3.5. Local built-in IO configuration

3.5.1. Add device

The local built-in IO master and slave devices can be added by using the wizard, topology

configuration or right-clicking to add devices. The effect after adding is as follows:

第三章 System ConfigurationP129/262

(1) Local built-in IO slave configuration

Parameters page

parameter Parameter Description
Fault Whether the module is in Fault state
Level Bit flips, not flipped by default

(2) SC20 local IO master

SC20 local IO control, need to add STEP_Local_Master master station

第三章 System ConfigurationP130/262

Once the connection to the controller is established, right-click on the device and click

Scan for Devices...” can scan slave devices

Click "Copy all devices to the project" to add the scanned slave devices to the master station.

第三章 System ConfigurationP131/262

Of course, you can also add it manually, double-click STEP_Local_Master to view the error

message

You can assign IO devices to different tasks, such as assigning AI devices to PulseTask. If

not assigned, the first task will be used by default. For applications that require fast

response, the corresponding equipment can be assigned to tasks with shorter cycle times.

3.5.2. SC20 local IO configuration

(1) 8 digital inputs

Configuration parameters

Bit inversion configuration, not inversion by default, generally do not need to be

modified

第三章 System ConfigurationP132/262

IO mapping

(2) 4 digital outputs

Configuration parameters

Bit inversion configuration, not inversion by default, generally do not need

to be modified

IO mapping

(3) 2 analog inputs

2 analog inputs, 1 RTC under-voltage detection, 16-bit resolution.

Configuration parameters

Upper and lower limit calibration value, filter coefficient (using first-order

lag filter)

第三章 System ConfigurationP133/262

Calibration method: Set the initial upper and lower limits to 65535 and 0, input the maximum

voltage (10V) and the minimum voltage (0V) respectively, and record the corresponding sampled

AD value, and then use the sampled AD value as the upper limit and lower limit respectively,

you can Complete the calibration; the upper and lower limits are only related to calibration,

and the AD value range collected after calibration is still 0-65535. To recalibrate, set the

upper and lower limits to 65535 and 0, and then repeat the above steps. Usually no modification

is required.

When the upper and lower calibration values ​ ​ given by the user are both 0, the calibration

value saved in the controller is used; when the upper calibration value specified by the user

is greater than the lower calibration value, the calibration value specified by the user is

used; when the upper calibration value specified by the user is less than When the lower limit

calibration value is used, the controller uses the default calibration value.

The last channel is the RTC voltage, which can be used for RTC under-voltage detection to

remind the user to replace the battery.

Note: In online mode, parameter value modification can only be achieved through the Write Parameters button.
Parameters modified online can be saved after power-off, and do not need to be modified in offline mode.

IO mapping

3.6. LocalBus configuration

LocalBus is a bus used to expand local IO, which is fast, stable and scalable. There are

currently three localbus slave devices:

serial number device name illustrate

1 STEP_LocalBus_16xDI_Module 16digital input module

第三章 System ConfigurationP134/262

2 STEP_LocalBus_16xDO_Module 16digital output module

3 STEP_LocalBus_4xAI_2xAO_Module 4 analog inputs and 2 analog outputs

3.6.1. Add device

Localbus devices can be configured using wizards or configuration. For detailed configuration,

refer to the chapter on device configuration.

Figure localbus device diagram

3.6.2. localbus master configuration

The Localbus master does not need to be configured, and the configuration parameters are

read-only.

第三章 System ConfigurationP135/262

Users can view specific error information through the ErrorID and Error String parameters:

Error ID Error description

0 No error, enter the periodic data communication state

1 LocalBusinitialization error

2
Local in STEP ASBusThe expansion module device is not added under the master

device

3 No expansion modules have been added to the controller

4
The number of expansion modules configured in STEP AS is inconsistent with the

actual number of expansion modules

5
The order of expansion module types configured in STEP AS is inconsistent with

the actual expansion module type order

6
Error when the extension module state machine switches from enumeration state

to configuration state

7 Error configuring expansion module parameters

8
Error when the expansion module state machine switches from the configuration

state to the periodic loop state

9 The expansion module has an error in the cyclic data communication state

Figure master station information

The Localbus master station does not need to be configured, the configuration parameters

are read-only, the user can view the specific error information through the error ID and error

string parameters: The expansion module device has a baud rate parameter, the default

communication rate is 6Mbps, the user does not need to use it Modified, except in special

circumstances.

3.6.3. localbus slave configuration

For different Localbus slaves, the configuration parameters are also different.

1. For the 16-channel digital input module, the configuration page is as follows:

第三章 System ConfigurationP136/262

The configuration parameters are as follows:
Configuration parameters Parameter Description

Ffilter Time Define the filter time in ms

BitInversion Bit flip

2. For the 16-channel digital output module, the configuration page is as follows:

The configuration parameters are as follows:
Configuration parameters Parameter Description

BitInversion Bit flip

3. For 4-channel analog input and 2-channel analog output module, the configuration page is

as follows:

第三章 System ConfigurationP137/262

The configuration parameters are as follows:
Configuration parameters Parameter Description

UpperLimit Defines the upper limit of the input

value.

LowerLimit Defines the lower limit of the input

value.

FilterTime Defines the filter time in ms.

3.7. Pulse pulse axis configuration

For SC30-B6H controller and SC20-A3H, it can support 4 high-speed pulse outputs and ABZ

encoder input. The pulse output type supports pulse plus direction, positive and negative

pulse and quadrature pulse.

Using the configuration topology to add the pulse servo master and slave station equipment,

the control of the pulse servo can be realized by using the motion control standard interface

provided by CODESYS. Similarly, you can use the project wizard to add pulse axes when creating

a new project. The number of configurable pulse axes is limited by the number of pulse axes

supported by the controller where you are located.

第三章 System ConfigurationP138/262

3.7.1. Add pulse axis master-slave device

第三章 System ConfigurationP139/262

3.7.2. Configuring the Pulse Axis Slave Device

第三章 System ConfigurationP140/262

parameter Parameter Description

iPulseType

Pulse type.

0: pulse + direction1: Positive and negative pulses2:

Quadrature pulse

bUseServoOn Whether to use the servo enable pin on the interface

bUserServoReady Is the pin ready using the servo on the interface

bUseAlarmIn Whether to use the servo alarm input pin on the interface

bUserClearAlarm Whether to use the clear servo alarm pin on the interface

bUseServoOnActiveHighActiveLow Servo enable active high or active low

bUserServoReadyActiveHighActiveLow Servo ready active high or active low

bUseAlarmInActiveHighActiveLow Servo alarm input is active high or active low

bUserClearAlarmActiveHighActiveLow Clear Servo Alarm Active High or Active Low

dwRatioTechUnitsDenom Denominator for the ratio of user units to pulse units

iRatioTechUnitsNum Numerator of the ratio of user units to pulse units

InvertDirection Movement Reverse

3.7.3. Control pulse axis slave device

After the pulse axis slave device is configured, the pulse axis slave device can be

controlled like an EtherCAT bus axis or an axis conforming to the PLCOpen standard, thereby

supporting single axis control, electronic cam, CNC, Robotics, etc.

第四章 programming basicsP141/262

第四章 programming basics

Operands are objects of operator, function, function block or program operation in the user

program, which can be used as input, output and intermediate storage of results. In STEP AS,

common operands include direct addresses, constants and variables.

Similar to other high-level languages,STEP ASThere are also concepts of constants and

variables. A constant is a number whose value does not change. Variables are identifiers

defined by the user. The storage location of variables can be specified by the user as the

specific address of the %I area, %Q area, and %M area, or it can be assigned by the system

without specifying the address, and the user does not need to pay attention to the storage

location of these variables.

4.1. direct address

This type of fixed address is also called a direct variable, which is directly mapped to

the specific address of the PLC device. The address information includes the storage location

of the variable in the CPU, the storage size and the offset corresponding to the storage

location.

Syntax: %<memory area prefix><size prefix><number>.<number>

The programming system supports the following3store prefix

1) I: input, physical input, "sensor"

2) Q: output, physical output, "actuator"

3) M: storage location

The programming system supports the following size prefixes:

1) X: Bit , one.

2) B: Byte, a byte

3) W: Word, a word

4) D: Double Word, two words (4 bytes)

5)L: four characters (8 bytes)

The first number is the offset address of the variable corresponding to the memory prefix,

"."The number after the variable isBOOLWhen type, the number of bits after the offset address.

Example:
%QX7.5 The output area is offset by 7 bytes, the sixth bit (bit5).

%QX17 Output area offset 17 bytes

%IW215 Input area offset by 215 words

%MD48 memory area offset 48 double words

iVar AT %IW10: WORD;//iVar variable is word type, mapped to the input area offset 10

第四章 programming basicsP142/262

words s position
 The data type represented by the size prefix is ​ ​ X type variable

is BOOL type, and the offset address should be specific;
 The size prefix matches the data type. A variable with a size prefix

of type B should be declared as a byte data type, such as BYTE, SINT,
USINT; a variable with a size prefix of W type should be declared
as a word data type, such as WORD, INT, UINT; Variables with a size
prefix of D type should be declared as a double-word data type, such
as DWORD, DINT, UDINT.

4.2. variable

Variables can be defined in the definition part of the POU or through the automatic declaration

dialog, or in the DUT or GVL editor. The variable type is identified by the variable type

keyword, such as VAR and END_VAR to identify the variable defined between it as local variable.

Variable types include local variables (VAR), input variables (VAR_INPUT), output variables

(VAR_OUTPUT), input and output variables (VAR_IN_OUT), global variables (VAR_GLOBAL),

temporary variables (VAR_TEMP), static variables (VAR_STAT), configuration variables

(VAR_CONFIG)).

4.2.1. Variable Definition

Variables can be defined in the declaration editor. The declaration editor has two display

forms: text view and table view. The text view declaration editor of the POU is as follows:

The table view declaration editor is as follows:

Definition syntax: <identity> {AT <address>}:<data type> {:=<initial value>}; The optional

第四章 programming basicsP143/262

part enclosed in curly brackets {}.

① logo

The identifier is the name of the variable. Variable naming should pay attention to the

following:

1) Cannot contain spaces or special characters

2) cannot be a predefined keyword

3) Names are not case sensitive

4) There is no limit to the length of the name

5) The name cannot be defined repeatedly

The name of the defined local variable can be the same as that of the global variable.

By default, the local variable is used. This variable can be used to represent the global

variable, or the full path variable name can be used to specify the specific variable. E.g:

Local variable iVar:=1; global variable.iVar:=2; full path variable GVL.iVar:=3;

Some naming suggestions should be considered when naming: if the variable name should be

prepared to express its meaning and data type, the variable should preferably use the Hungarian

notation (variable name = attribute + type + object description).

② AT address

AT addresses are direct addresses.

③ type of data

Data types are divided into standard data types and user-defined data types

1) Standard data types

Standard data types are divided into boolean, integer, floating point, string, time type

type keywords scope

used

internal

memory

boolean

type
BOOL TRUE,FALSE,0,1 8Bit

BIT type BIT
TRUE, FALSE, 0, 1, can only be used in

structures or function blocks
1Bit

integer

BYTE 0 - 255 8Bit

WORD 0 - 65535 16Bit

DWORD 0 - 4294967295 32Bit

LWORD 0 - 264-1 64Bit

SINT -128 - 127 8Bit

USINT 0 - 255 8Bit

INT -32768 - 32767 16Bit

UINT 0 - 65535 16Bit

第四章 programming basicsP144/262

DINT -2147483648 - 2147483647 32Bit

UDINT 0 - 4294967295 32Bit

LINT -263-263-1 64Bit

ULINT 0 - 264-1 64Bit

floating

point type

REAL 1.401e - 3.403e+38 32Bit

LREAL
2.2250738585072014e-308 -

1.7976931348623158e+308
64Bit

string

STRING

Only ASCII characters are supported

(Chinese characters are not supported). The

default maximum length is 80 characters. If

the maximum length is exceeded, it will be

removed. You can declare a maximum length in

characters,Such asstr:STRING(35):='This is a

String'; String functions support a maximum of

255 characters.

Strings

are stored

in ASCLL

form, and a

byte is used

to store the

terminator

WSTRING

Only UNICODE characters are supported

(Chinese characters are supported). The

default maximum length is 80 characters. If

the maximum length is exceeded, it will be

removed. You can declare a maximum length in

characters,Such aswstr:WSTRING(35):=”This

is a WString”;

Store

the string

in UNICODE

form and use

two bytes to

store the

terminator

time

TIME

TIME_OF_DAY(DT) time frame of a day

DATE From January 1, 1970

DATE_AND_TIME(DT) From January 1, 1970

2) User-defined data type

User-defined data types include arrays, structures, enumerations, unions, aliases,

subsets, references, and pointers. In the programming software STEP AS, it can be applied

by right-clicking→add object→DUTTo add structure\enumeration\union\alias 4 custom data

types.

a) array

grammar:

<Array_Name> : ARRAY[<Il1>..<ul1>,<Il2>..<ul2>,<Il3>..<ul3>] OF <elem.Type>

Il1, Il2, Il3 define the lower limit of the area, ul1, ul2, ul3 define the upper limit,

the value must be an integer, and elem.Type is the data type of each array element.

initialization and example

Card_game: ARRAY [1..13,1..4] OF INT;
arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5];

第四章 programming basicsP145/262

arr2 : ARRAY [1..2,3..4] OF INT := [1,3(7)]; (* array value 1,7,7,7*)
arr3 : ARRAY [1..2,2..3,3..4] OF INT := [2(0),4(4),2,3]; (* array 0,0,4,4, 4,4,2,3*)
arr1 : ARRAY [1..10] OF INT := [1,2]; (* array is partially initialized, no elements are
initialized to default value 0*)

Array structure initialization example

Structure definition:
TYPE STRUCT1
STRUCT
p1 : INT;
p2 : INT;

p3 : DWORD;
END_STRUCT

END_TYPE

Array structure initialization:
arr1 : ARRAY[1..3] OF STRUCT1 :=

[(p1:=1,p2:=10,p3:=4723),(p1:=2,p2:=0,p3:=299),(p1:=14,p2:=5,p3:=112)];

Access union element syntax:

<Array-Name>[Index1,Index2].

Example:

Card_game[9,2]

b) structure

grammar:

TYPE <structurename> | EXTENDS DUTTYPE:

STRUCT

<declaration of variables 1>

...

<declaration of variables n>

END_STRUCT

END_TYPE

<structurename> is a type that can be used as a data type. EXTENDS DUTTYPE is optional,

indicating that the members of DUTTYPE are inherited, and the members of DUTTYPE can be

accessed through the structurename type variable. Here DUTTYPE can be a struct type, a

union type or an alias.

initialization and example

Polygonline type structure definition:

第四章 programming basicsP146/262

TYPE Polygonline:
STRUCT

Start: ARRAY [1..2] OF INT;
Point1: ARRAY [1..2] OF INT;
Point2: ARRAY [1..2] OF INT;
Point3: ARRAY [1..2] OF INT;
Point4: ARRAY [1..2] OF INT;
End: ARRAY [1..2] OF INT;

END_STRUCT
END_TYPE

initialization:

Poly_1 : polygonline :=
(Start:=[3,3], Point1:=[5,2], Point2:=[7,3], Point3:=[8,5], Point4:=[5,7], End:=
[3,5]);

Access structure element syntax:

<structurename>.<variable>

Example :

Poly_1.Start

c) enumerate

An enumeration type is composed of several strings of constants, which are called

enumeration type values.

grammar:

TYPE <identifier>:

(<enum_0> ,<enum_1>, ...,<enum_n>) |<base data type>;

END_TYPE

identifier: custom enumeration type. enum_n: The constant value corresponding to the

enumeration type. Each constant can declare its corresponding value. If it is not declared,

the default value is used. base data type The corresponding data type of the enumeration

constant, which can be omitted, and the default value is an integer.

initialization and example

TYPE TRAFFIC_SIGNAL:
(red, yellow, green:=10); (* red initial value 0, yellow initial value 1, green initial

value 10 *)
END_TYPE

TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;
TRAFFIC_SIGNAL1:=0; (* the value corresponding to this enum variable is red *)

FOR I := red TO green DO

i := i + 1;

第四章 programming basicsP147/262

END_FOR;

d) joint

grammar:
TYPE <unionname>:

UNION

<declaration of variables 1>...<declaration of variables n>

END_UNION

END_TYPE

<unionname> is a type and can be used as a data type. All variables in the union have

the same storage location, and the size of the space allocated for the variable of the

union type is the size allocated by the variable that occupies the largest space in it

Example:

TYPE union1:
UNION

a : LREAL;
b : LINT;

END_UNION
END_TYPE

Access array element syntax:

<unionname>.<variable>

Example:

union1.a

e) alias

A data type is represented by an alias.

grammar:
TYPE <aliasname>:basetype END_TYPE

aliasname is the alias type name, used as the data type. basetype can be a standard data

type or a user-defined data type.

Example:

TYPE
alias1 : ARRAY[0..200] of byte;

END_TYPE

The initialization and access methods are consistent with their corresponding basic

types

f) Subset

第四章 programming basicsP148/262

The subset data type is a subset of the basic data type defined by it. You can add a subset

type by adding DUT, or you can directly declare a variable as the subset type.

DUT object syntax:

TYPE <name> :

<Inttype> (<ug>..<og>)

END_TYPE;

Name : valid IEC identifier

Inttype: is the data type SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, DWORD (LINT,

ULINT,

one of LWORD).

Ug : is a constant that must conform to the lower bound range corresponding to the base

type. The lower bound itself is contained within this range within.

Og : is a constant that must conform to the upper bound range corresponding to the base

type. The upper bound itself is contained within this range within.

Example of DUT object declaration:

TYPE
SubInt : INT (-4095..4095);

END_TYPE
Variable direct declaration example
VAR

i : INT (-4095..4095);
ui : UINT (0..10000);

END_VAR

g) quote

A reference is an alias for an object, and manipulating the reference is like manipulating

the object.

grammar:

<identifier> : REFERENCE TO <data type>

identifier: reference identifier. data type: The data type of the referenced object.

Example and initialization:

ref_int : REFERENCE TO INT;
a : INT;
b : INT;
ref_int REF= a; (* ref_int refers to a *)
ref_int := 12; (* a value is 12 *)
b := ref_int * 2; (* b value is 24 *)
ref_int REF= b; (* ref_int reference b *)
ref_int := a / 2; (* b value is 6 *)

 The BIT type cannot be referenced, that is, the definition of ref1:REFERENCE TO BIT is not allowed

h) pointer

The pointer holds the address of an object, and the pointer can point to any data type

第四章 programming basicsP149/262

(except the BIT type)

grammar:

<identifier>: POINTER TO <data type>;

identifier: pointer identifier. data type: The data type pointed to by the pointer.

Pointers are manipulated through address operators. Address operators include ADR (get

variable address) and ∧ (value corresponding to variable address)

Example and initialization

VAR
pt:POINTER TO INT; (* declares pointer pt to type INT*)
var_int1:INT := 5;
var_int2:INT;

END_VAR

pt := ADR(var_int1); (* address of variable varint1 is assigned to pointer pt
*)
var_int2:= pt^; (* Get the value corresponding to the pointer through the
^ address operator*)
pt^:=33; (* Assign value to the variable var_int1 corresponding to
the pointer*)

④ initial value

The default value of variable initialization is 0, and the user can add a custom initialization

value through the assignment operator ":=" when the variable is declared. The initialization

value is a valid ST expression. ST expressions are composed of operators, operands, and

assignment expressions. Operators mainly include addition (+), subtraction (-),

multiplication (*), division (/), etc.; operands mainly refer to constants, variables and

Function; assignment expression refers to the assignment operator ":=" to a variable in an

ST expression. Therefore, initialization can be a constant, variable or function, just make

sure that the variable used is already initialized.

Example:
VAR

var1 : INT := 12; (* Integer variable initial value 12*)
x : INT := 13 + 8; (* constant expression defines initial value*)
y : INT := x + fun(4); (* initial value contains function call*)
z : POINTER TO INT := ADR(y); (* pointer is initialized by address function ADR*)

END_VAR

 The global variable list (GVL) is generally initialized before the definition of the POU local variables;
 When the pointer is initialized at the time of definition, if the default is modified online, the pointer will

not be initialized (the pointer still points to the variable before the online modification)

4.2.2. Variable types

The main variable types include: local variables (VAR), input variables (VAR_INPUT),

output variables (VAR_OUT), input and output variables (VAR_IN_OUT), global variables

(VAR_GLOBAL), temporary variables (VAR_TEMP), static variables (VAR_STAT) and configuration

variable (VAR_CONFIG).

Variable type declaration syntax:

第四章 programming basicsP150/262

<type_key> | attribute_key

variable1;

variable2;

...

END_VAR

type_key: Type keyword, including VAR (local variable), VAR_INPUT (input variable),

VAR_OUTPUT (output variable), VAR_IN_OUT (input and output variable), VAR_GLOBAL (global

variable), VAR_TEMP (temporary variable), VAR_STAT (static variable), VAR_CONFIG

(configuration variable).

atribute_key: attribute keywords, including RETAIN, PERSISTENT, CONSTANT, used to clarify

the scope of variables. The attribute keywords are described in detail below.

 RETAINvariable (reserved variable)

The RETAIN variable can continue to retain the original value after the PLC is powered

off and restarted or warmly reset. RETAIN variables are stored in a specific RETAIN storage

area. A practical example would be a counter on a production machine; after a power failure,

it will recount where it left off.

Example
Define the RETAIN variable in the program:

PROGRAM PLC_PRG
VAR RETAIN

iRem1 : INT;
END_VAR

Define the RETAIN variable in the global variable table:
VAR_GLOBAL RETAIN

gvarRem1 : INT;
END_VAR

 If the RETAIN variable is declared in the program, only this RETAIN variable is saved in the RETAIN
storage area;

 If a RETAIN variable is declared in a function block, the entire function example data will be saved in the
RETAIN storage area, but only this RETAIN variable is treated as a reserved variable;

 If a RETAIN variable is declared in a function, this variable declaration has no effect.

 PERSISTENT variable (permanent variable)

The definition of VAR PERSISTENT is always the same as the definition of VAR PERSISTENT

RETAIN or VAR RETAIN PERSISTENT, which means that permanent variables have cold-reset

retention and program download in addition to the characteristics of RETAIN variables

(power-down retention and warm-reset retention). Reserved value properties. Persistent

variables are only initialized when the initial value is reset. An example of a common

permanent variable is a program runtime counter that can continue to count after a power

failure and continue to count after the program is re-downloaded.

Example
Example of permanent variable table:

第四章 programming basicsP151/262

VAR_GLOBAL PERSISTENT RETAIN
iVarPers1 : DINT;
bVarPers : BOOL; // Add the permanent variable instance path to the right-click

menu of the permanent variable table editor
PLC_PRG.PERS: INT; (*Persistent variable PERS defined in the PLC_PRG program *)

END_VAR

 An application has only one permanent variable table, and the permanent variable table can only be
added by right-clicking the application - adding object - permanent variable.

 You can add permanent variables in the program through the PERSISTENT property, and then in the
permanent variable editor, through the right-click menu - add all instance paths, add all the permanent
variables in the program to the permanent variable table.

The following table lists whether a variable retains its original value or is initialized

after a reset, power failure, etc.

X := keep original value - := value is initialized

action Var VarRETAIN
VAR PERSITENT or VAR PERSITENT

RETAIN or VAR RETAIN PERSITENT

power down - X X

warm reset - X X

cold reset - - X

Initial value

reset
- - -

Program

download
- - X

online

modification
X X X

illustrate:

1) RETAIN variables and PERSISTENT variables are reserved variables, and they are reserved

in the same reserved variable area of ​ ​ the programming system.

2) Direct variables mapped to %M addresses can be declared as reserved variables, while

direct variables mapped to %I and %Q A variable cannot be declared as a reserved

variable. (Reserved variables cannot be declared as direct variables when automatically

declared, So the %M direct variable can only be entered manually).

① local variable

The variables between VAR and END_VAR inside the POU are local variables and cannot be

accessed externally.

Assignment format:

local variable := value

Example
VAR

iLoc1:INT; (* local variable*)
END_VAR

② input variable

The variables between VAR_INPUT and END_VAR in the POU are all input variables, which

can be assigned values ​ ​ at the calling position.

第四章 programming basicsP152/262

POU call format:

local variable := caller input value

Example
VAR_INPUT

iIn1:INT; (*input variable*)
END_VAR

 Input variables can also be modified within the POU, even if the CONSTANT attribute is added

③ output variable

The variables between VAR_OUTPUT and END_VAR inside the POU are output variables. Output

variables can be returned to the caller when called, and the caller can do further processing.

POU call format:

output variable => caller match type variable

Example
VAR_OUTPUT

iOut1:INT; (* output variable*)
END_VAR

 For functions (FUNCTION) and methods (METHOD) in addition to the return value, there can be
additional output variables, but the caller must be assigned to receive variables at the time of the call.
For example fun(iIn1 := 1, iIn2 := 2, iOut1 => iLoc1, iOut2 => iLoc2);

 For function blocks, the function block output variable can be assigned to the caller after the call.

④ input and output variables

The variables between VAR_IN_OUT and END_VAR inside the POU are input and output variables.

Input and output variables can not only be passed into the called POU, but also can be modified

inside the called POU. The variable that is actually passed to the called POU is a reference

to the caller's variable.

Example
VAR_IN_OUT

iInOut1:INT; (*input/output variable*)
END_VAR

 Because the variable passed to the called POU is the reference of the caller variable, the input and
output variables in the function block instance cannot be directly accessed, that is,
<FBinstance><InOutVariable> cannot be used directly, because the input variable is already the caller
variable. citations, which have changed;

 Input and output variables cannot be constants and direct variables of Bit type (eg xBit0 AT %I2.0:BOOL).
If you need to declare input and output constants, you can add the CONSTANT attribute (VAR_IN_OUT
CONSTANT). If you need a direct variable of Bit type, you need to add an intermediate variable as an
input and output variable, and then assign the value of the intermediate variable to the direct variable of
Bit type.

Examples of direct variables of type Bit:
VAR_GLOBAL

第四章 programming basicsP153/262

xBit0 AT %MX0.1 : BOOL; (* declare a direct variable of type Bit*)
xTemp : BOOL; (* Intermediate variables*)

END_VAR

// function block with input and output variables (xInOut)
FUNCTION_BLOCK FB_Test
VAR_INPUT

xIn : BOOL;
END_VAR
VAR_IN_OUT

xInOut : BOOL;
END_VAR

IF xIn THEN
xInOut := TRUE;

END_IF

// Call the function block in the program
PROGRAM Main
VAR

xIn : BOOL;
I1 : FB_Test;
I2 : FB_Test;

END_VAR

// Use the direct address variable of type Bit, compile an error
//I1(xIn:=xIn, xInOut:=xBit0);
// Pass the value of xBit0 to the function block through the intermediate variable xTemp,
and then assign the intermediate variable to xBit0
xTemp := xBit0;
I2(xIn:=xIn, xInOut:=xTemp);
xBit0 := xTemp;

Input and output constants (VAR_IN_OUT CONSTANT) can only be read but not written, and

input variables can be modified in the current version, even if constant attributes are added,

so input and output constants can be used to make variable attributes unmodifiable.

Example of input and output constants:
PROGRAM PLC_PRG
VAR
sVarFits : STRING(16);
sValFits : STRING(16) := '1234567890123456';
iVar: DWORD;

END_VAR
POU(sReadWrite:='1234567890123456', scReadOnly:='1234567890123456',
iVarReadWrite:=iVar);
//POU(sReadWrite:=sVarFits, scReadOnly:=sVarFits, iVarReadWrite:=iVar);
//POU(sReadWrite:=sValFits, scReadOnly:=sValFits, iVarReadWrite:=iVar);
//POU(sReadWrite:=sVarFits, scReadOnly:='23' , iVarReadWrite:=iVar);

FUNCTION POU : BOOL
VAR_IN_OUT

sReadWrite : STRING(16); (* This string is readable and writable within this POU*)
iVarReadWrite : DWORD; (* This variable is readable and writable in this POU*)

END_VAR
VAR_IN_OUT CONSTANT

scReadOnly : STRING(16); (* within this POU this string is read only*)
END_VAR
sReadWrite := 'string_from_POU';
iVarInPOU := STRING_TO_DWORD(scReadOnly);

⑤ global variable

Variables defined between VAR_GLOBAL and END_VAR are global variables. General variables,

constants, and reserved variables can be declared as global variables.

第四章 programming basicsP154/262

existSTEP ASIn the programming software, you can right-click Apply > Add Object>Add global

variable tableto add the global variable table, and then add the global variable in the global

variable table.

Example
VAR_GLOBAL

iGlobVar1:INT; (* global variable*)
END_VAR

 If a local variable has the same name as a global variable, when the variable name is directly operated, it
means that the operation is a local variable. You can add the global scope operator (.) before the
variable name to operate the global variable, such as .iGlobVar1;

 Global variables are always initialized before local variables.

⑥ Temporary variables

Variables defined between VAR_TEMP and END_VAR are temporary variables that are

initialized on each call.

Example:
VAR_TEMP

iTemp1:INT; (*temporary variable*)
END_VAR

 Temporary variables can only be declared in programs and function blocks;
 Temporary variables can only be used in the declared program or function block.

⑦ static variable

Variables defined between VAR_STAT and END_VAR are static variables. Static variables

are initialized on the first call and after each call

After this POU, the variable value remains.

Example:
VAR_STAT

iStat1:INT; (* static variable*)
END_VAR

 Static variables can only be declared in function blocks, functions and methods, not in programs;
 Static variables can only be used within declared POUs.

⑧ configuration variable

Variables defined between VAR_CONFIG and END_VAR are configuration variables.

Configuration variables are direct variables, generally mapped to indeterminate address

direct variables defined by function blocks. A variable with an indeterminate address can

be defined in the function block. The address of this variable is represented by "*" to

represent an indeterminate address (any address), and then a configuration variable table

(by adding a global variable table) is added to put all The indeterminate address variables

in the function block instance are added to the configuration variable table, and all

indeterminate addresses are clarified in this variable table, so that the indeterminate

address variables in all function blocks can be managed centrally.

第四章 programming basicsP155/262

Function block undefined address variable definition syntax:

<identifier> AT %<I|Q|M>* : <data type>

The final determination of the address is done in the "variable configuration" of the

global variable list;

Example:
FUNCTION_BLOCK locio
VAR

xLocIn AT %I* : BOOL := TRUE;
xLocOut AT %Q* : BOOL;

END_VAR

Two I/O-variables are defined here, a local input variable (%I*) and a local output

variable (%Q*).

Then add the "Global Variable List" object (GVL). Enter the specific address of the instance

variable declaration between the keywords VAR_CONFIG and END_VAR, where the instance variable

refers to the complete instance path including the POU, and the specific address corresponds

to the undefined specified address in the function block (%I*, %Q*), In addition, the data

type must be consistent with the declaration of the function block.

Configuration variable definition syntax:

<instance variable path> AT %<I|Q|M><location> : <data type>;

Example
PROGRAM PLC_PRG
VAR

locioVar1: locio;
locioVar2: locio;

END_VAR
VAR_CONFIG (*correct variable configuration table*)

PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;
PLC_PRG.locioVar1.xLocOutAT %QX0.0 : BOOL;
PLC_PRG.locioVar2.xLocIn AT %IX1.0 : BOOL;
PLC_PRG.locioVar2.xLocOutAT %QX0.3 : BOOL;

END_VAR

 Generally, there is no need to configure variables, because for I/Q address input/output, variables can be
mapped to I/Q addresses through the input assistant (or directly input instance variable path) in the I/O
mapping interface of the corresponding module;

 Configuration variables are generally mapped to indeterminate address variables in function blocks, and
it can also map indeterminate address variables in programs;

 If there are only indeterminate address variables or only configuration variables, an error will be
reported during compilation. The two are used together.

4.3. constant

In PLC programming, some parameters with constant values ​ ​ will be used, such as timer

time, conversion ratio, etc. These parameters with constant values ​ ​ are called constants.

Constant declaration syntax:

第四章 programming basicsP156/262

VAR CONSTANT

<identifier>:<type> := <initialization>;

END_VAR

Example:
VAR CONSTANT

c_iCon1:INT:=12;
END_VAR

STEP ASSupports constants of multiple data types, common constants include boolean, integer,

time, string, etc. The specific constants are shown in the following table:

type describe Example

boolean type
There are two values ​ ​ TRUE and FALSE (1 and

0 can also be used), 1 equals TRUE, 0 equals FALSE
TRUE, FALSE, 1, 0

BIT type

Similar to the Boolean type, it can only be used

in a structure (occupancy bits) or a function

block (map the direct address of the BOOL type)

TRUE,FALSE,1,0

integer

The value of an integer constant can be binary,

decimal, octal, and hexadecimal. If the integer

value is not a decimal value, it can be

represented by "base" plus the sign "#" before

the integer value. 10 to 15 in decimal are A to

F in hexadecimal

decimal : 66

binary : 2#101

Octal : 8#72

Hexadecimal: 16#3A

Type constants: INT#22, BYTE#204

floating point

type

Floating point constants are represented by

decimal fractions and exponents, following

standard scientific notation format

7.4, 2.3e+9, REAL#3.12

ASCIIstring

ASCII string constants are between two single

quotes and can contain spaces and special

characters. One character is represented by one

byte, only ASCII characters are supported

(Chinese characters are not supported). The

default maximum length is 80 characters. If the

maximum length is exceeded, it will be removed.

You can declare the maximum length of characters,

such as str:STRING(35):='This is a String';

String functions support a maximum of 255

characters.

$ as an escape character Example:

'$30': 0, character 0, ASCII

character corresponding to

hexadecimal 30

$$: $, dollar character

$':'apostrophe

UNICODE string

The UNICODE string constant is between two double

quotation marks, and one character stands for two

bytes. Only UNICODE characters are supported

(Chinese characters are supported). The default

maximum length is 80 characters. If the maximum

length is exceeded, it will be removed. You can

declare the maximum length of characters, such

as wstr:WSTRING(35):=”This is a WString”;

"Unicode string"

time

Time constants are generally used to manipulate

time, consisting of "T#" (or "t#") plus "time

value". The unit of time value includes days (d),

hours (h), minutes (m), seconds (s) and

milliseconds (ms)

T#12h34m15s;

time The time range of one day, syntax: TOD# time TOD#15:36:30.123

第四章 programming basicsP157/262

type describe Example

value.

date Since January 1, 1970, syntax: d# date. D#2015-02-12

date time

Date constants and time constants are combined

into date constant constants, starting from

January 1, 1970, syntax: dt# date.

DT#2004-03-29-11:00:00

 Except for BOOL, BIT and string types, other types can use the keyword # constant value to represent a
type constant

第五章 Programming languageP158/262

第五章 Programming language

5.1. Introduction to programming languages ​ ​ supported
by STEP AS

The programming background supports a total of 6 PLC programming languages:

a) Ladder Logic Diagram(LD)Ladder Logic Diagram

b) Function Block Diagramm(FBD)function block diagram

c) Structured Text (ST)structured text

d) Instruction list (IL)instruction list

e) Sequential Function Chart (SFC)Sequential Function Chart

f) Continuous Function Chart (CFC)Continuous function diagram

Among them, LD, FBD, ST, SFC, IL are based on the IEC 61131-3 standard, and CFC is an extension

of the IEC 61131-3 standard.

No matter which language the user chooses, the basic editing method in the programming

interface is universal, which brings great convenience to programming.

Support commonWindowsText editor features such as support for "copy" (Ctrl+C) "paste" (Ctrl+V)

and "delete" (Del) and other shortcut keys;

Support standardWindowssuperior<Ctrl>,<Shift>Press the button to make multiple selections;

Support function keys<F2>Start the input assistant, and the system provides corresponding

input prompts or choices according to the specific environment.

 FBD and IL are temporarily not supported by default. For details on SFC and CFC, please refer to the help
document.

5.2. Structured Text Language (ST)

Structured text is a textual high-level language similar to PASCAL and C. Program code

consists of instructions, and instructions consist of keywords and expressions. Unlike the

IL language, ST statement loops can contain numerous statements, allowing the development

of complex structures.

E.g:
IF Value < 7 THEN

WHILE Value < 8 DO
Value := value +1;

END_WHILE;
END_IF;

5.2.1. Expressions

An expression is a structure that, when evaluated, can be used in an instruction.

Expressions consist of operators and operands. An operand can be a constant, variable,

第五章 Programming languageP159/262

function call or other expression.

E.g:

constants, for example:20,t#20s,'22231 test'

variables, for example:iVar,Var1[2,3]

Function call, the value is the return value of the call, for example:Fun1(1,2,4)

Other expressions:10+3,var1 OR var2,(x+y)/z,iVar1:=iVar2+22

Evaluation of expressions evaluates operands by operator, in an order defined by specific

operator precedence. The operator with the highest precedence in the expression shall be

evaluated first, followed by the next lower precedence operator, etc., in order from highest

to lowest. Operators with equal precedence shall be performed in the left-to-right order as

written in the expression.

example:

If A, B, C, and D are of type INT and have values ​ ​ 1, 2, 3, 4, respectively, then

A+BC*ABS(D) should be equal to -9, and (A+BC)*ABS(D) should be equal to 0.

When an operator has two operands, the leftmost operand should be evaluated first. For

example, in the expression SIN(A)*COS(B), the expression SIN(A) should be evaluated first,

then COS(B), and finally the product.

The following table documents the operators of ST language:
operate symbol priority

brackets (expression) Highest

function call function name (parameter list, separated by commas)

exponentiation EXPT

Negative value

make up

-

NOT

take

remove

remainder

*

/

MOD

add

reduce

+

-

Compare <,>,<=,>=

equal

not equal to

=

<>

logical and AND

logical XOR XOR

logical or OR lowest

5.2.2.ST instruction

The entire ST program consists of instructions, which are separated by semicolons ";". These

instructions consist of keywords and expressions. The ST instructions are as follows:
keywords illustrate Example

:=,S=,R= assign, set, reset A:=B; C:=SIN(X); b1 R=cond1

Function block calls and

outputs
CMD_TMR(IN:=%IX5,PT:=300); A:=CMD_TRM.Q

RETURN
Return (exit the current

POU)

第五章 Programming languageP160/262

IF choose

D:=B*B;

IF D<0.0 THEN

C:=A;

ELSIF D=0.0 THEN

C:=B;

ELSE

C:=D;

END_IF;

CASE multiple selection

CASE INT1 OF

1:

BOOL1 := TRUE;

2:

BOOL2 := TRUE;

ELSE

BOOL1 := FALSE;

BOOL2 := FALSE;

END_CASE;

FOR FOR loop

J:=101

FOR I:=1 TO 100 BY 2 DO

IF ARR[I] = 70 THEN

J:=I;

EXIT

END_IF;

END_FOR;

WHILE WHILE loop

J:=1;

WHILE J<100 AND ARR[J]<>70 DO

J:=J+2;

END_WHILE

REPEAT REPEAT loop

J:=-1;

REPEAT

J:=J+2;

UNTIL J=101 OR ARR[J]=70

END_REPEAT

EXIT exit the loop EXIT;

CONTINUE
Continue the loop for the

next execution
CONTINUE

JMP jump
label: i:=i+1;

JMP label

; empty statement ;

(1) assignment instruction

The assignment instruction is used for variable assignment, that is, the left side of

the assignment keyword is the variable, and the right side is the value to be assigned, which

is assigned through the assignment keyword.

E.g:

Var1 := Var2 * 10;

After completing the execution, Var1 is 10 times the value of Var2. The assignment keywords

include three kinds of ":=", "S=", and "R=".

第五章 Programming languageP161/262

 ":="For general assignment, the rvalue is directly assigned to the lvalue, and the lvalue

and the rvalue are equal.

 "S="Assigns a value to set, indicating that if the rvalue isTRUE, the lvalue variable

becomesTRUE(set) until calledR=early order

Initiate.

 "R="Assigns an assignment to reset, indicating that if the rvalue isTRUE, the lvalue

variable becomesFALSE(reset). for resetS=command set

bit variable.

E.g:

a S = b;

Once b is TRUE, a remains TRUE, even after b becomes FALSE.

(2) function block call

grammar:

<FB instance name>(FB input variable:=<value or variable>|, <more FB input

variable:=<value or variable>|...

More FB input variables. In the example below, a delay function block (TON) is called

and parameters IN and PT are assigned. Then the result variable Q is assigned to variable

A. The delay FB is instantiated with "TMR:TON".

Example:
<FB instance name>, <FB variable>:
TMR(IN := X0, PT := T#300ms);
A:=TMR.Q;

(3) RETURN instruction

The RETURN instruction means to leave this POU when the precondition is TRUE.

grammar:

RETURN;

Example:
IF b=TRUE THEN

RETURN;
END_IF;
a:=a+1;

If b is TRUE, the statement "a:=a+1;" will not be executed and the POU will be returned

immediately.

(4) IF instruction

Through the IF keyword, the execution condition can be judged, and the corresponding

instruction can be executed according to the execution condition.

grammar:

IF <boolean expression1> THEN

<IF_instruction>

第五章 Programming languageP162/262

{ELSIF <boolean expression2> THEN

<ELSIF_command 1>

.

.

ELSIF <Boolean expression n> THEN

<ELSIF_command n>

ELSE

<ELSE_command>}

END_IF;

Parts inside { } are optional.

If <boolean expression1> is TRUE, then only <IF_instruction> is executed, others are not

executed, otherwise, starting from <boolean expression2>, the Boolean conditional expressions

are evaluated one by one until one of the expressions evaluates to the value TRUE, then execute

the instruction corresponding to this expression, if no expression is TRUE, execute the

instruction corresponding to <ELSE_instruction>.

Example:
IF temp <17 THEN

heating_on := TRUE;
ELSE

heating_on := FALSE;
END_IF;

(5) CASE instruction

Using the CASE instruction, you can list locations according to a condition variable

according to its corresponding multiple values. the corresponding command. Condition

variables can only be integers.

grammar:

CASE <Var1> OF

<value1>:

<Instruction 1>

<value2>:

<Instruction 2>

<value3, value4, value5>:

<Instruction 3>

<value6 .. value10>:

<Instruction4>

...

<value n>:

<Instruction n>

ELSE

<ELSE Instruction>

END_CASE;

CASE instructions are processed according to the following flow:

if variable<Var1>value of<valueI>,So<Instruction I>will be executed.

第五章 Programming languageP163/262

if<Var1>does not match any of the values, then<ELSE Instruction>be executed.

If the same instruction is executed with several variable values, then these values

​ ​ can be written one after the other, separated by commas, and thus executed together.

If the same instruction will be executed in a variable scope, you can write the initial

value and the end value, separated by two dots.

Example:
CASE State OF

2:
Var1 := Var1 + 1;

1..6:
Var1 := Var1 - 7;

7..20:
Var1 := Var1 + 5;

END_CASE

(6) FOR loop

With FOR loops, it is possible to write repetitive processing logic.

grammar:

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>} DO

<instructions>

END_FOR;

Parts within {} are optional.

INT_Var is a counter, which is an integer type. As long as the counter <INT_Var> is not

greater than <END_VALUE>, <Instructions> will be executed. Check the condition first before

executing <Instructions>, if <INIT_VALUE> is greater than <END_VALUE>, <instructions> will

not be executed.

When <Instructions> is executed once, <INT_Var> automatically increases <Step size>.

<Step size> can be any integer value. If this parameter is not written, the default value

is 1. The loop stops when <INT_Var> is greater than <END_VALUE>.

Example:
FOR Counter:=1 TO 5 BY 1 DO
Var1:=Var1*2;

END_FOR;
Erg:=Var1;

Assuming the default value of Var1 is 2, after the FOR loop, its value is 32.

(7) WHILE loop

The WHILE loop can be used as a loop processing like the FOR loop, but unlike the FOR

loop, the loop condition can be any Boolean expression. Once the loop condition is met, the

loop executes, otherwise it exits the loop.

grammar:

WHILE <boolean expression> DO

<instructions>

END_WHILE;

第五章 Programming languageP164/262

When the value of <Boolean_expression> is TRUE, the <Instructions> instruction starts

to execute until the value of <Boolean_expression> is FALSE. <Boolean_expression> is FALSE

the first time, then <Instructions> will never be executed. If <Boolean_expression> will never

be FALSE, then <Instructions> will be executed repeatedly, which is called an infinite loop.

Make sure not to have an infinite loop when programming.

Example:
WHILE Counter<>0 DO

Var1:= Var1*2;
Counter := Counter-1;

END_WHILE

In a sense, WHILE and REPEAT loops are more powerful than FOR loops because there is no

need to count the number of loops before executing the loop. Therefore, in some cases, both

the WHILE loop and the REPEAT loop are sufficient. However, a FOR loop is better if the number

of loops is known.

(8) REPEAT loop

A REPEAT loop is different from a WHILE loop because the loop condition is checked after

the loop instruction is executed. This means that the loop executes at least once, regardless

of the loop condition value.

grammar:

REPEAT

<instructions>

UNTIL <Boolean expression>

END_REPEAT;

The execution logic is: <Instructions> is executed until the value of <Boolean expression>

is TRUE. If <Boolean expression> evaluates to TRUE the first time, then <Instructions> is

executed only once. If the value of <Boolean_expression> is never TRUE, then <Instructions>

will be executed forever, resulting in an infinite loop.

Example:
REPEAT

Var1:=Var1*2;
Counter:=Counter-1;

UNTIL Counter=0;
END_REPEAT;

(9) CONTINUE statement

The CONTINUE instruction is used in FOR, WHILE and REPEAT loops to end the current loop

early and restart the next loop.

Example:
FOR Counter:=1 TO 5 BY DO

INT1:=INT1/2;
IF INT1=0 THEN

CONTINUE; (*provides division by zero*)
END_IF;
Var:=Var1/INT1; (*executed,if INT1 is not 0*)

END_FOR;

第五章 Programming languageP165/262

Erg:=Var1;

(10) EXIT statement

EXIT is used in FORWHILE or REPEAT loops, to end the loop, regardless of other aborting

conditions.

(11) JMP statement

The JMP instruction is used to perform an unconditional jump to a program marked by a

jump label line.

grammar:

<label>:

JMP <label>;

<label> The label name is at the beginning of the program line, and the JMP instruction

must have a jump target, which is a predefined label. After reaching the JMP instruction,

the program will jump to the specified label to start execution.

Example:
aaa :=0;
_label11:aaa:=aaa+1;
(*instructions*)
IF (aaa < 10) THEN

JMP_label1;
END_IF;

The variable aaa is initially 0, as long as it is less than 10, the program will jump

to label1 and re-execute, so it will affect the repeated execution of the program between

the JMP instruction and the label.

Such functionality can also be implemented with a WHILE or REPEAT loop. Jump instructions

should generally be used sparingly because they reduce code readability.

(12) Notes

There are two ways to write comments in structured text.

use"(*”start"*)”Finish. This allows comments to be commented across lines. E.g: "(*This

is a comment.*)"

Single-line comments, use "//"Begins a comment until the end of the line. E.g: "// This

is a comment."

Comments can be anywhere in the declaration or implementation section of the ST editor.

Nesting of comments: Comments can be placed inside other comments

Example:
(*
a:=inst.out; (*to be checked*)
b:=b+1;
*)

第五章 Programming languageP166/262

5.3. Ladder Logic Diagram (LD)

5.3.1. Overview

Ladder diagram is a graphical programming language, similar to the structure of circuit

diagram. A ladder diagram consists of a series of networks (also called sections, hereinafter

collectively referred to as "networks"), each starting with a vertical line (power rail, energy

flow line) on the left. A network consists of contacts, coils, optional POU (function, function

blocks, programs), jumps, labels, and connecting lines.

The bus on the left side of the network is an energy flow line, and its state is always

TRUE. After the bus, elements such as contacts, operation blocks, and coils will be connected.

Boolean variables are assigned to each contact. If the value of the variable is TRUE, which

is equivalent to the switch being closed, the condition is passed from left to right along

the connection line, otherwise the switch is open. The coil on the right side of the network

receives an "ON" or "OFF" signal from the left side, and the corresponding TRUE or FALSE is

written to the Boolean variable associated with the coil. The ladder diagram editing interface

is as shown below.

 Description: 1 - Variable definition area; 2 - Ladder diagram programming area 3 - Toolbox

The main elements of the ladder diagram include contacts, coils, operation blocks,

branches, comments, etc. Add these elements to the network by inserting, dragging, scribing,

copying and pasting to form a ladder diagram to execute logic. The font, operand and comment

display of the ladder diagram interface can be set through [Tools>Options>FBD/LD Editor].

The ladder diagram supports online debugging functions such as monitoring, writing values,

forcing values, and breakpoints.

Description of branches: branches are divided into closed and non-closed ones, closed

ones are called parallel branches, and non-closed ones are called branches directly.

5.3.2. Ladder Diagram Elements

Ladder diagram elements include networks, contacts, coils, operation blocks, execution

blocks, branches, jumps, labels, and returns.

Contact, coil, operation block input and output are associated with operands, operands

can be variables, constants (TRUE, FALSE, 1, 2, etc.), addresses, see the variable definition

第五章 Programming languageP167/262

for details.

The LD element is located in the toolbox (menu command [View>Toolbox]), as shown in the

following figure. In addition to the general elements, ladder diagram elements and IEC standard

operators (such as Boolean operators and mathematical operators), the toolbox also includes

function blocks and POUs defined in the current program.

1 network

Icon -

A ladder diagram consists of a series of networks within which all other ladder elements

are located. Each network is indicated by the network sequence number on the left. Networks

can insert titles (summary descriptions of networks) and network notes (more detailed

descriptions of networks) through the menu [Tools > Options >FBD/LDeditor>conventional] to

enable the display of network title and network comment content.

Selecting a net inserts a label, located below the net title and net comment, as jump

targets.

The network can be enabled or disabled through the menu command [Switch Network Annotation

Status].

There is an area between the network serial number and the network content called the

network decoration area, which is used to display the breakpoint mark and bookmark location.

2 contacts

第五章 Programming languageP168/262

Icon -

Contacts are divided into normally open contacts and normally closed contacts. The contact

transmits ON (TRUE) and OFF (FALSE) values, the contact is a BOOL variable, if the variable

value is TRUE, the normally open contact transmits ON (TRUE) to the right, otherwise it

transmits OFF (FALSE), the normally closed contact Passing the value is the opposite.

The contact can add the function of delay signal, select the right-click menu command

[Edge Detection] of the contact, you can Turn the contact into a rising edge trigger

contact (when the variable value of the contact changes from FALSE to TRUE, the contact will

pass to the right) or a falling edge trigger contact (when the variable value changes from

TRUE to FALSE, the contact will pass on to the right) .

3 coils

Icon -

The coil is at the end of the network. The result of the logic operation on the left is

assigned to the coil variable. Coil variables can only be BOOL type, TRUE means (ON), FALSE

means (OFF). Coils only support up or down insertion of parallel coils.

Coils are divided into coils, inversion coils, set coils, and reset coils. You can switch

between the 4 coil types through right-click menu commands or shortcut keys.

coil : The result of the logic operation on the left is directly assigned to the coil

variable.

Invert coil: Invert the result of the logical operation on the left and assign it to the

coil variable.

Set Coil: If the status value on the left side of the coil isON(TRUE),then set the value

of the coil variable toON(TRUE), and a

remain in this state until the next time the variable is reset by the reset

coil toOFF(false).

Reset Coil: Reset the set coil.

4 operation blocks

Icon -

Operation blocks can be operators, functions, function blocks, programs, actions, and

methods. If it is a function block type, an edit box will be added above the operation block

box to display the function block instance.

An operation block contains at least one input and one output. The operation block mainly

consists of the following figure:

第五章 Programming languageP169/262

Operation blocks are divided into ordinary operation blocks and En/Eno operation blocks.

EN/ENOType operation block: In addition to including the input and output of the operation

block itself, it also addsENinput andENOoutput.EN/ENOThe execution logic of the operation

block is: whenENforTRUEWhen the operation block logic is executed, after the execution is

completedENOforTRUE,ifENforFALSE, do not execute the operation block,ENOforFALSE.

Notice:EN/ENOOperate block input wires can only be connected inENpin, output wiring can only

be connected atENOpin.

Operation block input and output pins:BOOLType input pins can add inversion, rising edge,

and falling edge signals. The output connection pin of the operation block can add a negation

signal.

Multi-input wiring operation block: As the name implies, there are multiple inputs and

multiple inputs are connected to the energy flow line. The following figure shows a multi-input

wiring operation block with two inputs connected. Since the multi-input wired operation block

has multiple connections and power lines connected, the multi-input wired operation block

can no longer be in parallel branches, and can only be in the first branch.

5 Execute block

Icon -

An execution block is a block in which an inline ST can be inserted, and an ST statement can

be edited in the block. The execution block can be enlarged or reduced, the maximum is 1000*400.

6 branches

Icon -

The branches form a non-closed parallel logic.

7 Label

Icon -

第五章 Programming languageP170/262

The label indicates the jump position, which is located at the head of the network, and jumps

to the label position through the jump element. The jump label is a string, and the naming

rules for symbol identifiers are required.

8 Jump

Icon -

When the input to the left of the jump element is TRUE, the jump to the specified label position

is executed. The jump element is on the far right of the network.

9 Back

Icon -

When the input to the left of the return element is TRUE, the current program immediately

exits execution. The returned element is at the far right of the network.

5.3.3.LD General Settings

The editor options are opened via the menu command [Tools > Options > FBD, LD and IL Editors].

It is divided into five tab settings: General/FBD/LD/IL/Print. This section mainly explains

the general setting interface as shown in the figure:

view

Insert Network Title: If this option is activated, each network in the ladder diagram

can insert and edit the title. If a title has been inserted, a row will be added to the top

of the current network to display the title. If there is no title, the title row will not

be displayed. Inserting a title is done via a menu command.

Show Net Comments: If this option is activated, the net comments can be edited for each

第五章 Programming languageP171/262

net in the ladder diagram. If a net comment is added, add a line under the net title to display

the net comment. If the net comment does not exist, no blank line will be generated to display

the net comment. Editing web annotations is done via menu commands.

Display function block icons-If this option is activated, if the operation block defines

an icon, the operation An icon is displayed in the middle of the block. Standard operators

(such asADD,SUB) and function blocks such asTON,TOF) have defined icons, user-defined

functions, function blocks or programs can add pictures by right-clicking [Object >

Properties > Bitmap > Click here to select the bitmap related to the project] to form the

operation block icon.

Show Operand Comments: If this option is activated, operand comments can be edited and

displayed on each operand in the ladder interface. Operand is a programming concept, such

as variables, constants, addresses are operands. Since variables such as constants or

addresses are not necessarily used in ladder diagrams, they can be annotated through operand

annotations. Editing operand comments is accomplished by selecting the operand string and

then right-clicking the menu.

Display variable comment: If this option is activated, the variable declaration comment

will be displayed on the variable in the ladder interface. Variable comments come from variable

declarations and cannot be edited.

font

Click the sample text to pop up the editor font selection box to set the font of the ladder

diagram text. The default font is Microsoft Yahei, which uses a small five-point font. The

font range mainly includes operand characters and comments. Execute block fonts using text

editor fonts (ST text, variable declaration text).

action

placeholder for new operator : not implemented

Default empty pins when adding an operation block: If this option is activated, when a

new operation block is added, the input and output pins of the operation block use null

characters,

If this option is not activated, operation block inputs and

outputs citation"???”character.

Operand fixed size setting : If this option is activated, operand fixed width, operand

annotation height and variable can be set

Annotation height.

As shown below:

Operand width : Set the number of fixed characters of the operand, the default is 23;

Operand Comment Height: Set the number of lines of fixed height of the operand comment,

第五章 Programming languageP172/262

default1OK;

Variable annotation height : Set the variable comment fixed height line number, default1OK;

5.3.4.LD menu commands

Menu commands Ladder diagram commands that can be executed through the right-click menu or

the LD toolbar menu.

1 Plug in the network

Contains two menu commands: Insert Network Command and Insert Network (below). You can

insert a network by dragging "Network" in the toolbox.

Insert Network: Icon- hot key:Ctrl + I, which means to insert an empty network above

the selected network.

Insert Network (below): Icon- hot key:Ctrl + T, which means insert an empty net below

the selected net.

Command execution conditions: first select a network, and insert a new network above/below

the selected network.

2 Toggle network annotation status

In the commented state, the code of the entire network is invalid, the code will not be

executed, and the execution block cannot be edited.

icon- hot key:Ctrl + O, which switches a network between the annotated state and the

non-annotated state.

Command execution condition: select network

3 Insert network header information

The network header mainly contains the network title, network comments and labels.

The commands related to inserting net headers include inserting labels, editing net titles,

and editing net notes.

Edit Network Title: Icon- , the title of the editor's choice network.

Command execution condition: select a network, and "display network title" is enabled

in the options

Editing Web Notes: Icon- , to edit the annotation for the selected network.

Command execution condition: select a network, and enable "Display Network Comments"

in the options

Insert Label: Icon- , insert a jump label into the selection network as the jump

position of the jump element.

Command execution condition: select network

4 Insert an operation block

Including insert operation block, insert empty operation block, insert operation block

第五章 Programming languageP173/262

with EN/ENO, insert operation block with EN/ENO Empty Function Block and Insert Parallel

Operation Block (below) 5 menu commands for inserting operators, functions, function blocks

and programs. You can also drag the "operation block" or "with EN/ENO operation block" to

insert the operation block.

The first four commands are used to insert concatenated operation blocks, and the last command

is used to insert and select parallel operation blocks of elements.

Insert position:

1) Select the horizontal wire and insert an operation block at the horizontal wire.

2) Select the vertical wire (parallel brackets), and for the left bracket, insert

it into the wire on the left side of the bracket. If it is a right bracket, insert

it into the right side of the bracket.

3) Select an element and insert an operation block to the left of the selected element.

insert operation block :icon- hot key:Ctrl + Bto pop up the input assistant to select

an operation block to be inserted.

Insert empty operation block: icon- hot key:Ctrl + Shift + B, inserts an empty

operation block without popping up the input assistant.

Operand block types can be entered at Operand Block Type.

insert tapeEN/ENOOperation block: icon- hot key:Ctrl + Shift + E, pop up the input

assistant to select an operation block to be inserted, this operation block hasEN/ENOinput

and output. bringEN/ENOoperation block, whenENforTRUEThe operation block is executed only

whenFALSEdoes not execute whenENOandENSame result.

insert withEN/ENOThe function block of : insert an empty operation block, the input

assistant will not pop up, this operation block hasEN/ENOinput and output.

Insert Parallel Block (below): Inserts an empty block below the selected element.

Selection elements can be contacts, operation blocks.

5 Insert execution block

Insert execution block: Icon - , insert a series execution block at the current selection

position, or insert it by dragging the "execution block" in the toolbox.

1) Select the horizontal connection, and insert an execution block at the horizontal

connection;

2) The choice is vertical connection (parallel bracket), for the left bracket, insert

it to the left side of the bracket; for the right bracket, insert it to the right side of

the bracket;

3) Select an element and insert an operation block to the left of the selected element.

The execution block is a block that can edit the ST statement, one-key text area to edit;

the execution block only has EnEno input and output.

6 Insert input

Insert input: icon - Shortcut key: Ctrl + Q, to add input to the variable input operation

block.

第五章 Programming languageP174/262

Variable input arithmetic blocks: ADD, +, MUL, *, SEL, AND, &, OR, |, XOR, MAX, MIN, MUX.

Insertion position: When an input pin is selected, an input is added before the current

input pin; when an operation block is selected, the added input pin is at the last position.

7 Insert the coil

Contains three menu commands: Insert Coil, Insert Set Coil and Insert Reset Coil. You

can also insert coils by dragging the "Coil", "Set Coil" and "Reset Coil" elements in the

toolbox.

Command execution conditions: The selection position cannot be located in the parallel

branch, nor can it be located at the input position of the multi-input wiring operation block.

Insert Coil: Icon hot key:Ctrl + Shift + A, output at the current position a

coil

Insert position:

1) Select the horizontal connection, insert a coil at the horizontal connection, and

the coil and connection are processed through non-closed branches.

2) The choice is vertical connection (parallel bracket), for the left bracket, insert

it to the left side of the bracket; if it is the right bracket, insert it to the right

side of the bracket.

3) Select the network and insert the new coil at the end.

4) If a coil, return or jump is selected, a new coil is inserted below the currently

selected element.

第五章 Programming languageP175/262

The default variable of the inserted coil is "???". You need to input the required variable

or constant. You can use the input assistant to directly select the input from the variable

list.

 Insert Set Coil: Icon - , which means to insert a set coil at the current position.

Operation and the above "Insert

Coil" is the same.

 Insert reset coil: Icon - , indicating that a reset coil is inserted at the

current position. Operation and the above "Insert

Coil" is the same.

8 Insert contacts

It includes four menu commands: Insert Contact, Insert Normally Closed Contact, Insert

Parallel Lower Contact, and Insert Parallel Upper Contact. You can also insert contacts by

dragging the "Contact" and "Normally Closed Contact" elements in the toolbox. point.

Insert Contact: Icon - Shortcut key: Ctrl + K, which means to insert a normally open

contact in series before the current position.

Insert position:

1）Select the horizontal connection line and insert a contact at the horizontal

connection line;

2）Select the vertical connection (parallel bracket), for the left bracket, insert

it into the left side of the bracket; if it is the right bracket, insert it into

the bracket

Right;

3）Select a network, then the new contacts are inserted at the end;

4) Select the element, and the new contact is inserted to the left of the element.

The contact default variable name is "???". Click on the text to enter the desired variable

or constant, and you can use the input assistant to select the input directly from the variable

list.

 Inserting a normally closed contact: Icon - , indicating that a normally closed

contact is inserted in series at the current position. Operation and the above

"Insert Contact" is the same.

 Insert parallel lower contact: Icon - , shortcut key: Ctrl + R, which means

to insert a constant in parallel under the selected element

Open contacts. The selection element can be a contact or an operation block.

 Inserting Parallel Upper Contacts: Icon - , shortcut key: Ctrl + P, which means

to insert a parallel on the selected element

Normally open contact. The operation method is the same as the above "inserting

第五章 Programming languageP176/262

the lower contact in parallel".

9 Insert branch

It includes three menu commands: insert branch, insert branch above, insert branch below,

or insert branch by dragging the "Branch" element in the toolbox. A branch is a non-closed

line, unlike a parallel branch.

 Insert branch: icon - , shortcut key: Ctrl + Shift + V, which means to insert

a branch at the selected connection position.

 Command execution conditions: The selection position cannot be located in the

parallel branch, nor can it be located at the input position of the multi-input wiring

operation block.

Insert position:

1）Select the wire and insert a branch below the wire.

2）Select contacts or coils to insert before selecting elements.

3} Select the left bracket and insert it on the left side of the bracket; select the

right bracket and insert it on the right side of the bracket.

As shown in the figure below, each selection position represents a branch.

 Insert branch below: icon - , which means to add a branch below the selected

branch.

 Command execution condition: select branch connection.

 Insert branch above: icon - , which means to add a branch above the selected

branch. Only when branch connection is selected

can execute.

 Command execution condition: select branch connection.

10 Jump and Return

Contains two menu commands: insert jump command and insert return. Jump and return belong

to the program execution sequence control commands. The normal program is executed

sequentially from top to bottom and from left to right according to the network sequence.

You can insert a jump element by dragging "Jump" in the toolbox or "return" in the toolbox

to insert a return element.

Jump and return are the same as coils and must be on the far right, so the rules for inserting

第五章 Programming languageP177/262

jumps and inserting returns are the same as those for inserting coils. For details, please

refer to the inserting coil commands.

 Insert Jump: Icon - Shortcut key: Ctrl + L, which means to insert a jump element

and jump to the specified label position.

The jump location is the label in the network, that is to say, you can jump from

one network to another network. The jump can only be executed when the input

conditions before the jump are satisfied.

 insert returns: icon - , which means inserting a return element. When the input

conditions are met, the current POU executes the return

back, back to the POU that called it

11 Negate

Icon - Shortcut key: Ctrl + N, negate operation block input, operation block output,

jump condition, return condition, contact value or coil.

The negation command can be executed in two places:

1) Inversion of elements: mainly contacts and coils. A slash (/) is added to the

contacts and coils after negation.

2) Connection inversion: mainly includes operation block input connection, operation

block output connection, coil input connection, jump input connection, and return input

connection. After inversion, a circle is added to the connection.

The inverse position is as shown below:

When the negation command is executed again, the negated state switches back.

12 Edge Detection

Icon - Shortcut key: Ctrl + E, which means to add edge trigger function to contact,

operation block input connection, coil input connection, jump element input connection, and

return element input connection.

The rising edge detection is equivalent to the R_TRIG function block, and the falling

edge is equivalent to the F_TRIG function block.

Edge detect commands can be executed in two locations:

1）Contact edge detection: Select the contact to execute the edge detection command,

and the contact adds the edge detection function. Indicates rising edge;

第五章 Programming languageP178/262

Indicates a falling edge.

2）Added edge detection for connections: operation block input connection, coil input

connection, jump element input connection, return element input

Connect the line, execute the block edge detection command, add the extension

signal symbol to the connection line, and the rising edge detection symbol is ;

the falling edge detection symbol is . Only BOOL type input wiring can add edge

detection function.

13 Set/Reset

Icon - Shortcut key: Ctrl + M, this command is used to increase the set or reset output

function. The set output is displayed as "S" and the reset output is displayed as "R". This

command can be executed multiple times to toggle between set, reset and normal output.

Set/Reset commands can be executed in two locations:

1）Select the coil, execute this command to set and reset the coil. Set coil: .

Reset coil: .

2) Select the BOOL output connection of the operation block (not the main output),

and set the reset function, as shown in the figure below:

14 Set output connections

Icon - Shortcut key: Ctrl + W, when the operation block has multiple outputs, the main

output can be modified output pin (an operation block has only one main output, and the main

output is connected to the subsequent elements). As shown below:

Select the output pin to be modified, execute this command, modify the output connection

15 Change the display of input and output pins

Contains two menu commands: Update Parameters and Delete Unused FB Call Parameters.

Update parameters: icon - Shortcut key: Ctrl + U, which means to update the output

第五章 Programming languageP179/262

of the selected operation block input and output parameters. If the input or output

parameters of the operation block change, by executing the "Update Parameters" command, update

the input and output parameters of the operation block

Delete unused FB call parameters: Icon - , delete the unused input pins and output pins

of the operation block, that is, when the input or output of an operation block is "???" or

empty, these inputs and outputs will no longer be displayed.

16 Convert to LD language

Displayed as Ladder Logic: Shortcut: Ctrl + 2. Convert FBD/IL to LD language; since FBD

and IL are no longer supported temporarily, old projects can use this command to convert FBD/IL

to LD language for display.

17 Jump Network

Go to...: Jump to the specified network. The jump network input box pops up, and specify

the jump network number.

18 Editing Operand Comments

Edit Operand Comment: Edit the comment of the selected operand.

Command execution conditions:

 In the options FBD/LD, activate the option "Show operand comments"

 Requires selection of operand string

Operands are logical concepts. Input variables, constants, and addresses are all operands,

such as operation block input variables, contact-related variables, coil-related variables,

and operation block instances.

Select the operand string, execute this command to display the Edit Operand Comment dialog

box, and edit the operand comment, as shown in the following figure:

19 Parallel mode switching

Toggle Parallel Mode: Toggle parallel branch parallel mode. The parallel mode is divided

第五章 Programming languageP180/262

into sequential type parallel branch and short-circuit type parallel branch.

 The sequential parallel parallel support uses a single line, and the branch output

result is a single branch output OR operation, as shown in the figure below, the branch

result is formed by OR.

 The parallel support of short-circuit parallel connection uses two wires, and the

output result of the branch needs to consider whether each branch contains a non-operation

block.

The branch of the non-operation block is used as a condition. If the branch of the

non-operation block has a result of True, the branch with the operation block will not be

executed (it can be understood as a contact short-circuit operation block). As shown in the

figure below, only the result of the X1 branch and the X2 branch is not TRUE, the first Move

branch instruction is executed.

Non-operation block branches need to meet the following conditions at the same time:

1）This branch contains only contacts or operator blocks.

2）Contacts cannot have delay signals

3）The operator operation block cannot be of type EnEno, and the input wiring of the

operator operation block cannot contain negation or delay signals

4）

5.3.5. Drag and drop operation

Ladder diagrams can drag and drop elements, including dragging elements from the toolbox

to the network, dragging elements in the ladder diagram interface, and dragging across

interfaces.

When dragging an element, the ladder interface will display the draggable position. The

draggable position has three display forms:

Diamond Display: Use a diamond , indicating that it can be dragged to the current

position to insert in series.

第五章 Programming languageP181/262

Up and down triangle display , which means to insert a parallel element above or below

the current element.

Up and down arrow display: use the up and down arrows , which means adding a

network up or down.

When dragging the element to the insertion position, the inside of each graphic will turn

green, such as , indicating that you want to insert at this position. The drag and drop

display is shown below.

1 Element box tool drag and drop

Elements in the toolbox can be dragged into the ladder editor.

Toolbox elements mainly include common elements, ladder elements, common BOOL operators,

math operators, other common operators, common function blocks and POUs.

Conventional and ladder elements are commonly used elements, including networks,

operation blocks, execution blocks, contacts, coils, branches, and more.

Boolean operators are mainly AND and OR operators.

Mathematical operators are mainly commonly used mathematical operators such as ADD, SUB,

MUL, DIV, GE, EQ, LE, and LT.

Other operators are mainly two-choice, multiple-choice, type conversion, and assignment

commonly used operators.

The function blocks mainly include commonly used function blocks such as TON, TOF, R_TRIG,

F_TRIG, and RS.

POUS mainly includes programs, function blocks, functions, methods, and actions defined

in the current project. The maximum display cannot exceed 200. If there are more than 200

in the project, in order to prevent the display from being confused, the POUS content will

no longer be displayed.

When dragging, each element has a draggable position. The draggable rules are as follows:

Contacts can be dragged to contacts, operation blocks (including execution blocks)

in parallel, and dragged to connections in series;

Operation blocks can be dragged to contacts, operation blocks (including execution

blocks) in parallel, and dragged to connections in series;

The coil can be dragged to the non-parallel branch, non-multi-connection operation

block input connection line, and can be dragged to the coil, return, jump above or below;

第五章 Programming languageP182/262

2 Edit interface element drag and drop

In the ladder diagram interface, you can drag and drop the selected element from one

position to another. Drag and drop elements can be in this editing interface, or drag and

drop to other ladder diagram editing interfaces.

The dragged element is the selected element (see the section on element selection), which

can be multi-selected or single-selected.

Drag includes normal drag and copy drag (press Ctrl, drag). For normal drag and drop,

after the selected element is dragged over, the selected element will be deleted; for copy-drag,

after the selected element is dragged over, the selected element is retained.

The drag and drop function is implemented according to the standard operation method.

The drag and drop rules for multiple selection or single selection are consistent with

the paste of standard editing commands

5.3.6. Graphic Display Tool

The ladder diagram graphics display tool is used to control the ladder diagram display

mode, including selection tool, drag and drop tool, magnifying glass tool and zoom tool. The

default ladder diagram is the selection tool mode. The graphic display tool is located on

the lower right side of the ladder interface, as shown in the figure below:

 Selection tool, the selection tool is the default display tool, in the selection

tool mode, the mouse style is, you can select the element

element to perform editing operations.

 Drag tool, in drag tool mode, you can drag and drop the area to display

 The magnifying glass tool, in the magnifying glass mode, the mouse style is, with

the mouse as the center, to zoom in and display, there is a magnifying glass as the center.

use. As shown below:

第五章 Programming languageP183/262

 Zoom tool, the zoom tool can display the current interface zoom ratio, or set the

zoom ratio, as shown in the following figure:

In addition, click "...", the zoom ratio setting dialog box will pop up, enter the desired

zoom ratio, as shown in the following figure:

5.3.7.LD debugging

The ladder diagram provides powerful debugging functions. In addition to the existing

monitoring table monitoring, the ladder diagram also provides monitoring, operand writing,

forced value writing, breakpoint and single-step debugging functions in online mode.

1 Monitoring

In the online mode, the connection lines, elements, operand variables, etc. in the ladder

diagram interface express the execution result in a specific form. As shown below:

第五章 Programming languageP184/262

1) Monitor the connection

For BOOL type value connection, when it is turned on (the value is TRUE), it will

display a thick blue line, and when it is not connected, it will display a thick black line.

Non-BOOL values ​ ​ are wired (operation block input, integer variables in output,

time type variables, floating point variables, etc.), use a thin line, and use a thin black

line when the value is zero; use a thin blue line when not zero.

2) Monitoring elements

When the contact is on, the normally open contact displays or normally closed

contact display ;When the contact is not conducting, the normally open contact

displays or

normally closed contact display .

When the coil is turned on, the normal coil displays Or negate the coil

display ;When the coil is not conducting, the normal coil displays

Or negate the coil display .

For the EnEno operation block, since the EnEno operation block only has En is True,

the logic of the operation block itself is executed.

The EnEno operation block itself can know at a glance whether the operation block

is executed (whether the operation block is enabled), and distinguishes the text

display of the operation block type. If the operation block is executed (En input

is True), the operation block type is displayed in black font. No execution is

displayed in gray font (operation block is disabled), as shown below:

第五章 Programming languageP185/262

3) Monitor variables

Monitor variables display different widths according to different types to reduce

the space occupied. For variable lengths, such as strings and enumerations

Type (display enumeration name), the default length is 12 characters, if the display

is not complete, use ... to replace it, and display it completely through the

information prompt; for fixed-length, such as integers, floating-point numbers, etc.,

display according to the maximum length.

You can drag and drop monitoring variables to the monitoring variable list.

You can change the variable display mode and execute the menu command: menu

【Debug>display mode].

Since functions and methods are executed immediately and only have temporary data, after

logging in, methods and functions cannot be directly monitored. If you need to monitor

functions and methods, you need to add breakpoints to the functions and methods to

interrupt execution, as shown in the following figure.

2 Write and force

Ladder contacts, coils and variables can be written to prepare values, and then execute

the "Write Value" command or "Force Value" command under the Debug menu to write a value or

force value to the variable. Before writing the value or forcing the value, you need to write

the prepared value, as shown in the following figure:

第五章 Programming languageP186/262

For contact, coil and BOOL type variables, switch between TRUE and FALSE ready values

​ ​ by double-clicking the element position or the variable value position. If you

double-click the contact or the middle position of the coil, the ready value is switched.

For non-BOOL type variables, double-click the variable value position to pop up the

prepared value dialog box, and enter the prepared value, as shown in the following figure:

 After writing the forced value, the front of the value increases Identifier that

this value is mandatory.

 To release the forced value, use the menu command【Online>Release Value】.

3 breakpoints

LD supports breakpoint function. If a breakpoint is added, the program execution will

be automatically interrupted at the breakpoint position, and program debugging can be

performed. It supports operations such as jumping in, skipping, jumping out, and running to

the cursor position.

After adding a breakpoint, the position (element) of the added breakpoint is represented

by a light red rectangle. When the execution reaches the breakpoint, the position of the

currently executing breakpoint is represented by a yellow rectangle; if there is a breakpoint

in the network , the dots in the network decoration area, as shown below:

第六章 Debug and DiagnosticsP187/262

Since the ladder diagram is graphical, and breakpoints can only be added where there are

logic statements, in order to optimize the performance of the ladder diagram, not all places

have logic statements, that is, not all places can add breakpoints, such as touch Breakpoints

cannot be added at point positions, non-EnEno operator block positions.

Breakpoints are generally located at places where variable values ​ ​ may change, at

program branches, or at places where another POU is called, such as POU, output variable

assignment, and so on. You can open the Breakpoints dialog (menu [View>Breakpoints]) to view

all possible breakpoint locations.

Breakpoints can mainly be added to the following locations:

The starting position of the network, indicating the first possible breakpoint

position in the network. When a breakpoint is added to the network, it will automatically

increase to the first one.

breakpoint location.

The operation blocks of non-EnEno operators, such as FBs, actions, program calls,

execution blocks, etc., are not included.

Coil, return, jump element position.

第六章 Debug and Diagnostics

6.1. run/stop

6.1.1. Running and Stopping the Controller

1. After logging in, select Debug→Start in the menu bar, or press <F5>. Start the operation

of the downloaded application in the controller.

第六章 Debug and DiagnosticsP188/262

2. Select Debug in the menu bar→stop, or press <Shift>+<F8>. Application stopped.

3. During the debugging operation, the current value of the variable can be confirmed in the

declaration part and the implementation part.

Click on the toolbar start Stop running.

available from2system,10system,16Select the display format of the variable value

displayed in the decimal system. Select the display form from Debug→Display Mode on

the menu bar.

If using safe online mode, a confirmation message can be displayed before performing

a run, stop.

第六章 Debug and DiagnosticsP189/262

6.1.2. single cycle

The application can be executed for 1 loop in simulation mode to confirm that the created

program performs as expected.

1) Open P after loginOU.

2) Select the menu barDebug → Single Cycle, or press <Ctrl+F5>.

The opened POU is in the state of executing one cycle.

6.2. breakpoint

By setting breakpoints at specific locations in the program, execution can be forcibly stopped

and variable values ​ ​ can be confirmed.

All programming languages ​ ​ support breakpoints.

6.2.1. breakpoint settings

1. Select the location where you want to set the breakpoint, then select Debug→Set or Clear

Breakpoint in the menu bar, or press <F9>.

Breakpoints are set to enabled.

Example: When a breakpoint is set on line 12 in ST

After starting the operation, it will stop when the breakpoint is reached.

The following debug operations can be performed from the stopped state.

Select the following menu under "Debug" in the menu bar.
menu hot key toolbar icon

jump over <F10>

jump in <F8>

jump out <Slift>+<F10>

run to cursor none

set next statement none

show current

statement

none

To cancel the set breakpoint, select Debug in the menu bar again→set upOr clear the breakpoint,
or press <F9>.

第六章 Debug and DiagnosticsP190/262

You can set a condition to stop the action at a breakpoint. Select Debug in the menu bar>Create

a new breakpoint, which will show"new breakpoint"dialog. choose"condition"tab, enter the

condition to stop at the breakpoint.

The list of breakpoint settings can be confirmed in the breakpoint view. The position of the

breakpoint, the break condition, and the number of times reached can be confirmed. Breakpoints

can also be added, removed, enabled and disabled.

To display the breakpoint view, select View in the menu bar→breakpoint.

In the process of debugging the program, you can also set a breakpoint there by double-clicking

the first column of the program, and double-clicking again can clear the breakpoint.

Double-clicking anywhere other than the first column has no effect on setting or clearing

breakpoints.

6.2.2. execution point setting

After the execution point is set, the pre-specified processing can be executed when the set

position of the execution point is reached, and output to the log of the SC series controller.

The application does not stop at the set position of the execution point.

1. Select the location where you want to set the execution point, and then select Debug in

the menu bar→new breakpoint. Displays the New Breakpoint dialog box.

第六章 Debug and DiagnosticsP191/262

2. Click the "Execution Point Settings" tab. The execution point setting screen is displayed.

3. Check "Execution Point", enter the code to be executed at the execution point, and the

message output to the log.

Use the ST program to describe the execution code in the "Execute the following code" column,

and enter the message to be output to the log in the "Print information in the device log"

column.

Example: When multiplying the value of "x3" by 5 and outputting the value to the log

第六章 Debug and DiagnosticsP192/262

4. Click the [OK] button.

An execution point has been set. When the execution point is enabled, it will be displayed

on the execution point.

To output messages to the log at the execution point, select Project in the menu bar

→Project settings,exist"Project settings"dialog box select"compile options"category.

Enable settings → Enable logging in breakpointssetting.

6.2.3. call stack view

In the call stack view, you can confirm the stop position when entering the stop state due

to breakpoints, etc. The position can also be confirmed if it is called from another block.

1. Select View > Call Stack in the menu bar.

Displays the call stack view.

2. Set breakpoints to stop running the application.

Displays the POU that calls the stop position and the POU of the stop position.

Example: Stop at line 1 of "ADD_3" application, "ST_POU" calls "ADD_3"

第六章 Debug and DiagnosticsP193/262

6.3. debug operation

This section describes the procedure for debugging operations such as writing and monitoring

of values.

6.3.1. Writing of Values ​ ​ and Forcing of Values

The variable values ​ ​ of the controller can be changed. Value change methods include value

write and value coercion.

Writing of value: Set the value you want to change only once. The value can then be changed

by the program.

Forcing of values: Set the value you want to change every cycle, and keep that value.

For example, to change the value of the BOOL type variable "x1" from FALSE to TRUE by
writing the value, follow the steps below.
1. Double-click the element whose value you want to change in the implementation section.

Change the preset to the changed value.

Values ​ ​ can also be preset by clicking on the "Set Values" cell in the Declarations section.

2. Select Debug→Write Value in the menu bar, or press <Ctrl> key + <F7> key.

write preset value

Select the menu barDebug → Force Values, or pressing the <F7> key will force the variable

value to change. The value of the variable changed by force of the value will be displayed ,

the value will not be updated by the executor after that.

第六章 Debug and DiagnosticsP194/262

Selecting Debug→Release Value in the menu bar, or pressing <Alt> key + <F7> key, will release

the forced value.

6.3.2. monitor

You can manage variables such as registering variables, checking variable values, and changing

values ​ ​ in the monitor view.

Up to 4 monitor views (Monitor 1 to Monitor 4) can be used.

For example, to register the variable "x1" in the watch view of watch 1, follow these steps.
1) Select View→Monitor→Monitor 1 in the menu bar.

Displays the monitor view of monitor 1.

2) Drag and drop the element of the variable "X1" of the implementation section to the

monitoring view.

The variable "x1" is already registered in the watch view.

Variables can also be registered to the watch view by dragging and dropping variables from

the declaration section.

At this point, the step of registering the variable to the monitor view is complete. The

variable value can be confirmed in the value cell.

 exist"Monitor all mandatory"In the view, variables that perform value coercion are

automatically registered.

Select Display→Monitor→Monitor All Forced from the menu bar.

 If an execution point is set, the timing displayed on the monitoring view can be set

第六章 Debug and DiagnosticsP195/262

to the time when the execution point is reached. exist"execution point"Select the set

execution point in the column of .

6.3.3. Process control

Flow control can distinguish executed and unexecuted parts of the program by color and monitor.

Flow control can be used for LD programs, ST programs, and FBD programs.

1) Once logged in, select Debug→Toggle Flow Control Mode in the menu bar.

Displays the notification dialog for flow control.

2) Click the [OK] button.

Switch to the display of flow control.

The executed part is shown in green and the unexecuted part is shown in white.

Example: Flow Control Display in LD Program

Example: Flow Control Display in ST Program

If using secure online mode, you can display a dialog box with a confirmation message before executing flow
control.

6.3.4. operating mode

By using the Operational Mode feature, some debugging operations can be restricted from

being performed. As a result, it is possible to prevent the controller from malfunctioning

in the event of an incorrect operation.

The current operating mode is displayed by an icon in the status bar.

a) debugging()

Unlimited.

b) locked()

Cannot perform run/stop, set new breakpoints, force variables. Single loop,

variable writing, and value forcing can be executed.

第六章 Debug and DiagnosticsP196/262

c) operational ()

Only variable writing can be performed. Run/Stop, setting of new

breakpoints, forcing of variables, single loop, and forcing of variables cannot be performed.

To set this mode, the following conditions must be met.

● application is running

● no active breakpoints

● no mandatory variables

● The application of STEP AS is identical to the boot application of

the controller

After logging in, select Online→Work Mode→Locked in the menu bar.

The operating mode is changed from debug mode to locked mode.

6.4. Monitoring function

When logging in to the controller, the current values ​ ​ of program variables and device

parameters can be checked in real time (monitoring).

6.4.1. Monitoring variables in the declaration editor

Variables declared in the declaration editor can be monitored.

The front of the value that was changed by force of the value will be displayed .

6.4.2. Monitoring variables in the implementation part of the
program

● Variables can be monitored in the implementation part of the program (inline

monitoring).

● next to the variable will be like , generally displays the current value.

● Contacts, coils, and connecting wires are displayed in blue when the current value is

TRUE.

<Inline monitoring of LD programs>

第六章 Debug and DiagnosticsP197/262

<STInline monitoring of programs >

Inline monitoring can be disabled. Startup Options (Tools → Options), in"text

editor"category"monitor"Cancel in tab"Enable online monitoring"tick.

6.4.3. Monitoring variables in the watch view

Variables can be registered and monitored in the watch view.

Up to 4 monitoring views can be used, and dedicated views that automatically register variables

that perform value coercion.

赵生虎
The picture was too blurry before it was changed

第六章 Debug and DiagnosticsP198/262

6.5. reset

Resets the active application and initializes variables.

There are the following types of reset, and the variables initialized are different for each

type.

a) warm reset

Initialize variables other than RETAIN and PERSISTENT variables.

b) cold reset

Initialize variables other than PERSISTENT variables.

c) initial reset

Initialize all variables. Remove active applications from SC Series controllers.

d) Device reset

Initialize all variables, device user management information. Remove the application and

source code from the SC series controller.

The contents initialized by the reset operation are shown in the following table.

〇: keep

×: Initialize

Update: Update

operate

Variables

other than

"hold/persist"

keep

variables

(RETAI

n)

persistent

variable

(PERSI

STENT

)

application
User

Management

start the

application

Source

File

IP

address

At RTC

Area

stop 〇 〇 〇 〇 〇 〇 〇 〇 〇

warm

reset

× 〇 〇 〇 〇 〇 〇 〇 〇

cold

reset

× × 〇 〇 〇 〇 〇 〇 〇

download × × 〇 renew 〇 renew renew renew 〇

online

change

〇 〇 〇 renew 〇 renew renew 〇 〇

power

cycle

× 〇 〇 〇 〇 〇 〇 〇 〇

initial

reset

× × × × 〇 〇 〇 〇 〇

Reset

device

"Device"

× × × × × × × 〇 〇

第六章 Debug and DiagnosticsP199/262

6.5.1. Warm reset/cold reset/reset (PLC initialization)

Select and execute warm reset, cold reset, reset (PLC initialization) from "Online" in the

menu bar. Take warm reset as an example to illustrate the execution steps.

1, Select Online→Warm Reset in the menu bar.

Example: Execution steps for warm reset

2, Click the [Yes] button. Perform a warm reset.

6.5.2. Reset the device from STEP AS

To reset the device from STEP AS, please right-click on the navigation bar window and execute

from the displayed menu.

1) Right-click the device object in the navigation bar window and select "Initial Reset"

from the menu. A message confirming resetting the device is displayed.

2) Click the [Yes] button. Perform a device reset. You will be logged out when you perform

a device reset.

Right-click on the navigation bar window[Application]object, select"Remove the app from

the device"to delete the selected application.

Reset

device

"Device"

using

hard

switch

× × × × × × × 〇 〇

第六章 Debug and DiagnosticsP200/262

6.6. Device tracking feature

6.6.1. Device Tracking General Features

Using STEP AS's device tracking, you can monitor the STEP controller's data waveforms.

1, Right-click on the device and select Add Object→Device Tracking....

2, is in a state of being logged into the device.

3. Double-click the added Trace to open the "Trace" window.

第六章 Debug and DiagnosticsP201/262

4. Click "Configure" or "Add Variable" to open the trace configuration window to add variables

and make related settings.

5. Graphical operations

 Drag: move the timeline

 Ctrl+drag: Move the Y axis

 Scroll: Zoom the timeline

 Ctrl+Scroll: Scale Y axis

第六章 Debug and DiagnosticsP202/262

6. right-click menu

Save Trace: You can save the information drawn in the graph to a file.

Load Trace: Trace files saved with "Save Trace" can be read on the graph.

6.6.2. Device tracking analysis function

STEP AS also provides the waveform data analysis function. Click the STEP Trace icon in

the device trace tool bar to enter the STEP debug trace page. This icon is valid only after

the login is successful.

Enter the STEP debugging trace page to see the following picture, the curve is the variable

第六章 Debug and DiagnosticsP203/262

added in the trace configuration.

No. name content

(1) toolbar Displays buttons for play, stop, mode, coordinates, math analysis, etc.

(2) Waveform display

area

The area where the waveform is displayed in real time.

(3) Operation panel Configure the cursor, coordinate range, and calculation method for the

waveform display.

(4) Mathematical

analysis display

area

F to display the waveformFTCalculations, basic mathematical operations

curves.

(5) Channel data list Displays the effective value, average value, maximum value, etc. within

the range of the curve cursor.

1) toolbar

The display content of the toolbar is as follows:

name icon Features

play Click to display the curve in real time.

stop Click to stop the curve display.

normal mode Normal mode when selected.

X-axis zoom mode When selected, it is the X-axis magnification mode.

Y-axis zoom mode When selected, it is the Y-axis magnification mode.

第六章 Debug and DiagnosticsP204/262

name icon Features

XYShaft zoom mode X when selectedYAxis magnification mode.

Coordinate scaling mode When selected, it is the point zoom mode.

X-axis translation mode When selected, it is the X-axis translation mode.

Y axis translation mode When selected, it is the Y axis translation mode.

XYaxis translation mode X when selectedYAxis translation mode.

revoke Undo the operation.

reset reset operation.

cursor Check to display coordinate guides.

fixed cursor Check to lock the guideline distance.

point coordinates Check to display point coordinates.

Amplitude Check to display the amplitude-frequency curve.

Phase frequency Check to display the phase-frequency curve.

Mathematical analysis Check to display math analysis curves.

2) Waveform display area

Click the play button, the waveform display area will display the variable curve, and its

sampling frequency is the task cycle in the debug trace configuration, and the display effect

is as follows.

3) Operation panel

The operation panel can configure the waveform display, including axis setting, FFT

operation, and mathematical operation. The axis setting is mainly to configure the displayed

waveform; the FFT operation configures the FFT waveform display; the mathematical operation

configures the display of the mathematical analysis waveform.

第六章 Debug and DiagnosticsP205/262

Axis setting: The time axis is used to set the number of points on the X axis in the display

area. The effect after setting 5000 points is as follows.

Select Curve is used to select the curve for which the current setting is valid.

Y-axis (scale) is used to set whether the Y-axis of the current curve is visible.

Automatic is used to select the Y-axis scale mode of the corresponding curve. When selected,

it is the automatic mode, and the coordinate range automatically changes with the range of

the curve value. When not selected, the coordinate scale unit is the scale value set in the

setting box in the following line.

The Y-axis scale setting box is only valid when the scale mode is not automatic. The effect

of setting the scale on the Y-axis is as follows.

Offset is used to set the offset position of the Y axis.

The scale is used to set the mode of the current offset.

The offset setting box is used to set the offset distance. A positive value indicates an upward

offset, and a negative value indicates a downward offset. When the scale is selected, the

offset distance is the setting value * the scale unit. When the scale is not selected, the

offset distance is the actual setting value. , the effect after setting the offset is shown

below.

第六章 Debug and DiagnosticsP206/262

4) Data analysis display area

 FFT operation: Y-axis mode is used to select linear or logarithmic mode for Y-axis in

the FFT window; window type is used to select the window function of FFT. The effect of

the FFT operation is as follows, and the waveform is the FFT analysis result in the cursor

area.

 Mathematical operation: Waveform 1 is the waveform before the mathematical analysis

operator; Waveform 2 is the waveform after the mathematical analysis operator; Operation

can select the type of mathematical operation, including addition, subtraction,

multiplication and division. The following is the effect of the addition operation.

第六章 Debug and DiagnosticsP207/262

The cursor is used to select whether to display the coordinate guide line of the corresponding

form; the cursor color is used to set the color of the coordinate guide line.

5) Channel data list

Display the mathematical analysis values ​ ​ in the cursor selection area, including

effective values, maximum and minimum values, etc. The display effect is as follows.

第七章 Axis run control configurationP208/262

第七章 Axis run control configuration

7.1. Axis running configuration

7.1.1. Axis Basic Settings

Including virtual axis/real axis mode selection, linear/rotation mode setting, CNC limit

parameters, etc.

NOTE:

(1) Two modes are supported: virtual axis mode and real axis mode. When "Virtual axis mode"

is checked, it means that the virtual axis mode is selected. If it is not checked, it means

that the real axis mode is selected (the default is not checked), as shown in the figure below.

1

(2) No matter which mode it is in, the "Linear Mode" or "Modal Mode" setting is supported,

as shown in Figure 2 below

category Function description

virtual axis

mode

It can run the mode without physical servo and motor, and can simulate the

operation to obtain the required parameters. Not disturbed by the external

environment.

real axis mode It must run with a servo motor, and some parameters must be obtained in the

real axis mode, such as online CoE, real axis mode, there will be external

interference, such as in TRACE, it will affect the display effect.

Graph Linear Mode

第七章 Axis run control configurationP209/262

Graph Modal Pattern

1 Virtual axis mode: If checked, it is virtual axis mode; if not checked, it is real

axis mode.

2 Linear mode: the parameters of the axis increase or decrease in a linear manner;

3 Software error handling: only valid in linear mode, mainly used for the response method

of the software to the error when the axis is in error.

4 Software limit: used for negative and positive limit in linear mode

5 Modal mode: Axis parameters are executed repeatedly in rotation cycles.

6 Dynamic limit: mainly used for axis setting.

7 Speed ​ ​ acceleration and deceleration type: mainly used for the speed running track

of the axis.

8 Identifier: axis for external ID

9 Position following error: How to manage the movement of the axis after position lag.

7.1.2. Unit Conversion Configuration

Chart unit conversion

1 Display unit: Also known as user unit, it uses a common daily unit of length for

customer display.

2 Reverse Direction: If checked, the axis rotates in the opposite direction.

3 The number of motor command pulses: the encoder resolution of the motor, the number

of pulses required for the motor to rotate once, the default value is ()

4 Working stroke: the distance that the mechanical end moves when the motor rotates

once (user unit). If there is a transmission device (such as pulley, mechanical gear,

reducer, etc.) between the motor and the mechanical end, check "Use reducer", otherwise,

select "Do not use reducer".

5 The travel distance of one rotation of the working gear: the distance moved by the

mechanical end of one rotation of the working gear (user unit).

第七章 Axis run control configurationP210/262

7.1.3. Automatic mapping settings

Graph automatic mapping

graph information

As shown in the figure, you can see the axis type, version number and other information.

7.2. Single axis control

7.2.1. Enter the axis control page

The user configures the axis to be debugged and the connected controller device in the

project, and can enter the axis control mode by right-clicking the 402 axis in the navigation

bar.

第七章 Axis run control configurationP211/262

7.2.2. Axis operation and status

After entering the axis control page, click the login connection axis in the axis control page; when the project
status is displayed as normal, you can click the button in the axis operation to control the axis. If the project status
is displayed as stopped, you can click System Reset to reset. If it is still invalid for a long time, click logout, and then
click login again to repeat the above operations.

Note: If the project is connected to the device, in the axis control mode, you can switch between the device and
the simulation by clicking the connected device. If the axis control mode entered in the form of simulation, it can only
be the simulation mode.

第七章 Axis run control configurationP212/262

Use the drop-down box to switch to different axes for debugging. After selecting the axis

to be debugged, the information on the current page is switched to the selected axis.

The following figure shows the axis status display, which is used to display the axis status

and communication status of the current axis; the abnormal display of the communication status,

the normal display
M od ule_O k.ico

.

In the axis control mode, the axis can be enabled, forward and reverse, jog and other

operations. The page displays the parameter information and error information of the currently

selected axis (including axis error and FB error). After running, you can configure the

software limit of the axis, the running target speed and the target position during jogging.

The position information during jogging is relative. Location. Speed ​ ​ and location

information needs to be logged in to take effect.

Errors can be reset using a system reset, clearing the error message, returning to the default

state, or using an axis reset operation to clear the error.

第七章 Axis run control configurationP213/262

7.2.3. Multi-axis debugging

In addition to debugging a single axis, it is also possible to tune all axes simultaneously

by selecting all axes. It should be noted that during on-site debugging, it is necessary to

confirm whether other issues such as limit need to be considered, and then operate all axes.

In order to facilitate debugging of multiple axes, you can open all axis control pages to

display the information of all axes in a list. If you do not enter the axis control mode,

there will be no data display.

After entering the axis control mode, you can see the list of all the currently debuggable

axes, but the information of the axis will not be displayed, and the operation of the axis

is also unavailable.

The information of the axis will be updated to the page only after logging in. After logging

in, you can set the limit of the axis, set the speed and position and other information.

第七章 Axis run control configurationP214/262

Click the enable column to enable or disable the axis, and there are buttons on the lower

side to enable/disable all axes. Other buttons are also available for all axes, and these

operations can be used to debug a single axis, multiple axes or all axes together.

When all axes are selected, the configuration of all axes can be modified by modifying the

speed, position or limit value of one axis.

7.3. Simulate Servo Drive

When programming and debugging the MC operation control application program, the programmer

has SC30 controller at hand, but no servo driver, or there is not enough servo driver. If

you want to debug and debug the user program, you can use the "virtual axis" method to replace

the servo The real axis of the drive, as shown in the following figure:

第七章 Axis run control configurationP215/262

During programming and debugging, if the number of connected servo axes is different from

the number configured in the user program, the system will alarm and cannot be debugged normally.

The way the servo operates. The "running" state of the axis can be seen visually, verifying

the correctness of our MC control program.

The imaginary axis is also the axis. Although it is a "virtual axis", the operation logic

of the state of the axis still needs to be programmed according to the state transition logic

in the PLCopen specification. For example, MC_Power must be run before running, MC_Reset should

be run after an error occurs, etc., which is convenient for us to debug and rule out logic

errors in the user program.

If the actual servo axis is connected, just cancel the "virtual axis mode" of the

corresponding axis in the above figure, and then it can run normally.

第八章 How to edit the programP216/262

第八章 How to edit the program

STEP AS supports the PLC international standard IEC 61131-3. The program structure of

the six languages ​ ​ is shown in the figure below. The upper part is the variable declaration,

and the lower part is the program implementation. The following figure is an example of ST

language.

Tip: STEP AS supports Chinese programming.

8.1. Structured Text (ST) Programming

This section describes the procedure for creating a program (ST program) using structured

text.

 Creating an ST program requires the ST program's POU object. Set the object setting

language to ST program.

第八章 How to edit the programP217/262

 ST programs consist of a combination of expressions and instructions. Expressions and

instructions can also be executed in conditionals or loops. Each instruction must end

with a semicolon (;).

8.1.1. Syntax of ST program

The following syntaxes can be used in ST programs.

project example

assignment

statement:=

Assign the value on the right to the left. example:

iVar1 : = 4;

set assignment

statementS=

If the right side is TRUE, set the left side to TRUE.

Once left becomes TRUE, left remains TRUE even if right becomes FALSE.

Do not insert spaces between S and =. example:

Var0S=Var1;

reset assignment

statementR=

If the right side is TRUE, it is set to FALSE on the left side.

Once the left side becomes FALSE, the left side remains FALSE even if the right

side becomes FALSE.

Do not insert spaces between R and =. example:

VarR=Var1;

IF instruction

Judging the conditions, execute the instruction according to the judgment result.

example:

IF temp < 17

THEN heating_on := TRUE;

ELSIF temp > 25

THEN open_window := TRUE;

ELSE heating_on := FALSE;

END_IF;

FOR instruction

Repeats the instruction the specified number of times. example:

FOR iVar0 : = 1 TO 10 BY 1 DO

iVar1 : = iVar1 + 1;

END_FOR;

WHILE command

Judging the conditions, repeating the execution of the instruction when the

conditions are met. example:

WHILE (iVar0 <> 0) DO

iVar1 : = iVar1 * 2;

END_WHILE;

CASE instruction

Judging the conditions, execute the instruction according to the judgment result.

example:

CASE iVar0 OF

1 : iVar1 : = iVar1 / 2;

2 : iVar1 : = iVar1 / 4;

ELSE

iVar1 : = iVar1 / 8;

END_CASE;

第八章 How to edit the programP218/262

project example

REPEAT command

Judging the conditions, repeating the execution of the instruction when the

conditions are met. example:

REPEAT

iVar0 : = iVar0 + 1; UNTIL

iVar0 = 100

END_REPEAT;

EXIT command The EXIT instruction is used to end the loop within the FOR instruction, WHILE

instruction, and REPEAT instruction.

RETURN

instruction

The RETURN instruction is used to end the POU.

Instructions in the POU following the RETURN statement are not executed.

JMP instruction

The JMP instruction unconditionally moves to the line where the JMP label is

located. example:

iVar0 : = 0;

Label1 : iVar0 : = iVar0 + 1; IF (iVar1 = 5) THEN

JMP Label1;

END_IF;

CONTINUE command The CONTINUE instruction is used to move to the beginning of a loop within a FOR

instruction, WHILE instruction, REPEAT instruction.

Entered keywords are automatically converted to uppercase letters (auto format).

tool→OptionsIn the "Automatically convert keywords to uppercase (k) (auto format)" category,

uncheck the auto format settings.

8.1.2. Comment ST procedure

Comments can be made in ST programs. The commented part cannot be executed.

type of annotation content

single line
Beginning with // to the

end of the line becomes a

comment. example:

bVar1 := 2; // single line comment

第八章 How to edit the programP219/262

Multi-line

The part from (* to *) becomes a comment. You can

also enter (* *) in (* *). example:

(*

multi-line comment1

multi-line comment2

*)

8.1.3. call function block

Function blocks of all IEC libraries can be called, regardless of the original programming

language.

Examples are as follows:
TMR:TON;

TMR (IN:=%OX5, PT:=T#300ms);

varA:=TMR.Q;

8.2. FBD/LD/IL programming

8.2.1. FBD/LD/IL Editor (Editor)

The three programming languages ​ ​ FBD/LD/IL share an editor, so the operation is similar.

The toolbar in the lower right corner of the editing area is shown in the following table:

Return to normal editing mode. The mouse pointer changes to the shape of the default arrow. You can
select and edit components in Edit View.

Pan Tool: The mouse pointer changes to the shape of 2 arrows. You can click and drag in the editor view
FBD / LD / IL editor or move the CFC chart towards the visible area.

Zoom in tool: In the lower right corner of the editor view, the mouse pointer changes to the position of a
cross, and a zoom window can be opened. When you move the mouse pointer over your graph, the
zoom in tool will show up at the intersection at 100% zoom. Please note: If you click on the view, the
magnification tool will close and a portion of the graph will be displayed at 100% magnification. If you
want to keep the zoom factor set, then you should use the default arrows () to return to the default
edit mode.

Zoom In Tool: This will open a drop down list to select a zoom factor. Clicking More Options (...) will open
the zoom in dialog for entering more values. The current zoom factor is always displayed to the left of
the symbol.

Zooming with the wheel: Hold down the [Ctrl] key and move the wheel, you can change

the zoom factor in 10% steps.

It is also possible to use the mouse to move components in the editor.

第八章 How to edit the programP220/262

Each graphical editor has its own toolbox view, by default, to the right of the editor

view. A component contained in the toolbox that can be dragged to the insertion point in the

editor view. STEP AS highlights the insertion point with a grey position marker in the shape

of a diamond, triangle or arrow. These flags are green when you move the mouse pointer. Release

the mouse button to insert the component at the selected location. As shown below.

 conventional components

 Element "Network"

symbol:

The network is the basic unit of an FBD or LD program. existFBD/LD/ILIn the editor, networks

are assigned to a list. Each net is provided with a continuous net number on the left, which

includes: logical and arithmetic expressions, program/function/function block calls, jump

or return statements.

An IL program contains at least one network. The network can include all the IL statements

of the program.

You can provide titles, annotations or labels for each network. Available in options

(categoryFBD, LD, and IL, you can define whether the delimiter between net titles, comments

and individual nets should be displayed in the editor.

 Element "Operation Block"

symbol:

A box and its calls can represent additional functions such as IEC function blocks, IEC

functions, library function blocks, operands.

A box can have any number of inputs and outputs.

If the box also provides an image file, the box icon will be displayed inside the box.

Available in Software Options, CategoryFBD, LD and ILactive displaysymbol boxoptions.

第八章 How to edit the programP221/262

If you change the box interface, you can useFBD/LD/IL➔ update parametersThe command updates

the parameters of the box without reinserting the box.

 Component "assignment"/assign"

symbol:

The FBD editor displays the newly inserted assignment in a straight line followed by 3

question marks. The LD editor shows the newly inserted assignment as a coil with 3 question

mark markers above the coil.

Once inserted, you can replace the placeholder ??? with the name of the variable to where

the left generated signal is assigned. You can use the input assistant to do it.

 element withEN/ENOfunction block

symbol:

This element is only available in the FBD and LD editors.

Boxes typically correspond to FBD/LD/IL elementsframe; however, the box also includes an

EN input and an ENO output. EN and ENO data types are BOOL.

Functions with EN input and ENO output: If the value of EN input is FALSE when the box is

called, the operation defined in the box will not be executed. However, if the value of

EN is TRUE, these operations will be performed. The ENO output has the same value as the

EN input.

 Element "input"

symbol:

The maximum value entered depends on the type of box.

Newly added inputs are first marked with ???. You can replace ??? strings with variables

or constants.

 Component "label"

In FBD and LD, labels are optional identifiers in the network that you can use to specify

as a jump target.

If you insert a jump label in the network, it will be added as an editable area label in

the network.

see also

 element "jump"

symbol:

In FBD or LD, the current cursor position determines whether to insert jumps directly before

the input, directly after the output, or at the end of the network.

You can enter a jump label directly after the jump element as the jump target.

In IL, you can edit a jump with the JMP instruction.

 element"return"

If the input to the RETURN element becomes TRUE, this element immediately interrupts the

execution of the box.

In an FBD or LD network, you can place return instructions after or in parallel with preceding

elements.

The RET instruction in IL is given to you for exactly this purpose.

 element"branch"

symbol:

This element is available in the LAD and FBD editors and represents an open line branch.

A branch splits the processing line from the current cursor position into 2 subnets, the

operation is performed consecutively from top to bottom. You can further split each subnet

and finally build a multi-branch structure in one network.

Each subnet is given a marker symbol (rectangle) at the branch point, which you can select

第八章 How to edit the programP222/262

to execute further commands.

Notice:copy, Cut and Paste commands are not available for subnets.

In order to delete a subnet, you must first delete all components in the network, and then

delete the marker symbol for the subnet.

 Element "Execute"

symbol:

The element is a box that allows you to enter ST code directly in the FBD and LD editors.

You can drag actuators from the tool view to the actuators of your POU by dragging them

with the mouse. If you click Enter ST code here..., the input field will open and you can

enter multiple lines of ST code.

 LDelement"touch point"

symbol: , in the editor

This element is only available in the LD editor.

Contacts pass left to right on the TRUE (ON) or FALSE (OFF) signal until the signal finally

reaches the coil on the right side of the network. For this purpose, a Boolean variable

containing this signal is assigned to the contact. To do this, replace the '???' placeholder

above the contact with the name of a boolean variable.

You can arrange some series or parallel contacts. In the case of two parallel contacts,

only one needs to get a TRUE value for ON to be passed to the right. If the contacts are connected

in series, all of them must get a TRUE value for ON to be passed to the right of the last

contact in the connection. Therefore, you can program the electronic type parallel and series

connections with the LD.

If the variable value isFALSE, the negative contact forward passTRUESignal. you can

FBD/LD/IL➔ negative negates an insertion contact with the help of the command or tool Insert

a negative contact into the view.

If you place the mouse pointer on the selected contact of the network where the left mouse

button is pressed, thenConvert to coilThe button will appear in the network. If you now move

the mouse pointer to the button, still press the button with the mouse, and release the mouse

button on this button, STEP AS converts the contact to a coil.

 LDelement"coil"

symbol: , in the editor

This element is only available in the LD editor.

第八章 How to edit the programP223/262

The coil takes the value provided from the left and is saved in a boolean variable assigned

to that coil. Its input value can be TRUE (ON) or FALSE (OFF).

Multiple coils in a network can only be arranged in parallel.

in an invalid coil , the negated value of the input signal is stored in a Boolean variable

assigned to that coil.

 set coil, reset coil

symbol: , , in the editor: ,

Set Coil: If the value TRUE reaches a set coil, the coil retains the value TRUE. As long

as the application is running, the value will no longer be overridden here.

Reset Coil: If the value TRUE reaches the reset coil, the coil regains the value FALSE.

As long as the application is running, the value will no longer be overridden here.

you can FBD/LD/IL➔ set up/reset Define an insert coil with the help of the command as a

set or reset coil or from tool Insert the coil in the view as set coil and reset coil element.

 LD element "Branch Start/Stop"

symbol:

This element is used to close line branches.

 LD Closed Line Branch

A closed line branch is only available in LD and contains a start and end point. It is used

for the execution of parallel analysis of logic elements.

 LD programming operation

(1) placed in parallelaOperation of the contacts

Select in the toolboxLadder Diagram Element ➔ Parallel Contact, drag and drop to the s

position.

A contacts are placed in parallel.

(2) Insert/end branch at specified position

1 Select in the toolboxLadder Elements > Branch Start/End, drag it to the display

next to the contact bVar1 in the main window.

第八章 How to edit the programP224/262

When the drag is complete, a red rectangle marking the start of the branch is displayed

between the contacts bVar1 and bVar2. The blue rectangle marks are candidates for where the

branch ends.

2 Click on the blue rectangle marker between contacts bVar3 and bVar4.

A branch is inserted from between contacts bVar1 and bVar2 to between contacts

bVar3 and bVar4.

(3) Enter a title and comment (LD)

In the ladder language, the following 4 titles and comments can be entered. Display examples

of titles and comments are shown in the figure below.

第八章 How to edit the programP225/262

NO. project content

(1) Symbol annotation
is a comment on the declared variable. Display the
same annotation for the same variable. Please enter
a comment for the variable in the declaration
section.

Comments appear in cells with a black background.

(2)
web title

(circuit title)

Captions can be added for each net (circuit).

Click on the upper left corner of the network (circuit)

and enter a title.

(3)
web annotation

(Circuit Notes)

Notes can be added for each net (circuit).

Click on the upper left corner of the net (circuit) to

enter a comment.

(4) Operand Comments is a comment on the variable. Different comments
can be added to the same variable. Click on the top
of each variable in the Implementation section to
enter a comment.

To display titles and comments, options need to be set. Launch Options (Tools ➔ Options),

select the General tab of the "FBD, LD, and IL Editors" category, and select the items to

display in the display bar.

8.3. Sequential Function Chart (SFC) programming

SFC is a sequential graphical programming method, and its program/POU usually includes

an initial step program and a subsequent transition step program.

8.3.1. SFC editor

The SFC editor is a graphical editor. In the "SFC" editor, you can insert individual

components into the diagram via the main menu, context menu and toolbox view. When the editor

第八章 How to edit the programP226/262

is activated, SFC components are available in the SFC toolbox.

Insert Component: Select an available component in the editor toolbox. Drag the component

to be inserted, STEP AS will prompt the insertable position, just drag into the target position.

As shown in the figure below, STEP AS marks all possible insertion points with a gray box.

If you move the mouse over a gray box, the color of the box will change to green. When the

mouse button is released, the object is inserted at that location.

If inserting multiple Action and Transition branches, select these objects in batches.

If a branch Drag into the diagram, the start and end of the branch must be set using the

mouse pointer. Set the start of the branch by releasing the mouse button at the insertion

point. Then the color of the box turns red, click "Insert Point", and the setting is finished.

STEP AS inserts a branch between the start and end markers.

In online mode, STEP AS displays active steps in blue.

第八章 How to edit the programP227/262

8.3.2. execution order

When performing actions such as exit and input detection, the order of verification is

as follows: from top to bottom, and from left to right on the SFC layout.

time check/execute step action

STEP AS performs the following checks for each step to obtain the layout of the SFC:

 STEP ASCopy the time spent in the active step into the corresponding autonomous step

variable<step name>.t. (not yet implemented)

 If a timeout occurs, then, STEP ASSet the respective error flags. (not yet implemented)

 For non-standard steps:STEP ASPerform a single step operation.

8.3.3. action qualifier

Specify a qualifier for the step that describes how the single-step action will be

processed.

Qualifier preprocessing is done in the SFCActionControl function block in IecSfc.library.

This library is automatically integrated into the SFC plugin project.

The available qualifiers are shown in the following table:
N non-prestored As long as this step is activated, the action is also activated.

R0 Complete reset Disable action

S0 set (storage) STEP AS This action is executed as long as the step is active. This action is

performed until a reset signal is received, even if the step has been terminated.

L limited time STEP AS This action is executed as long as the step is active. The action is

第八章 How to edit the programP228/262

performed until the step is stopped or the given time elapses.

D delay STEP AS activates the step only after a given delay time and starts executing

the action while the step is still active. Execute the action until the step

is deactivated

P pulse STEP AS executes this action once as long as this step is activated.

SD Storage and

Latency

Only after a given time delay, STEP AS starts the operation and the step becomes

active. The action will continue until a reset signal is received.

DS Latency and

Storage

STEP AS activates the step only after a given delay time and starts executing

the action while the step is still active. The action will continue until a

reset signal is received.

SL Storage and limit

time

STEP AS This action is executed as long as the step is active. Executes this

action until the given time elapses, or it receives a reset signal.

Notice:You must enter the qualifiers multiple times in the format L, D, SD, DS, and SL as time constants.

8.3.4. SFC logo

name
data

type
describe

SFC

initialization

BOOL TRUE:STEP The initial step of the AS sequence reset. The flags of other SFCs

will also be reset (initialized).

Need to reset againSFCInitforFALSE.

SFC reset BOOL This function is similar toSFCInit. However, STEP AS continues processing

after initial step initialization. For example, in the initial step, you can

just resetSFC resetmarked asFALSE.

SFC error BOOL If a timeout occurs in the SFC diagram asTRUE. If a second timeout occurs

in the program, please reset before confirmingSFCErrorvariable. statementSFC

erroris a requirement for the function order control of the other flag

variables (SFC error step,SFC error POU,SFC exit error).

SFC limit

enable

BOOL use in stepSFC errorIn the timeout control, in particular use activation

(TRUE) and the statement (FALSE). If you declare and activate this variable

(SFC setting), then you must set it toTRUE, so thatSFC errorWork. If not,

the timeout is ignored. This is useful, for example, in startup or manual

control. If you do not declare this variable, thenSFC errorwill work

automatically. needSFC errorstatement of.

SFC error steps string Stores the name of this step, which causes a timeout, which passesSFC erroris

registered. needSFC errorstatement of.

SFC error POU string Store the function block name when a timeout occurs, then passSFC erroris

registered. needSFC errorstatement of.

SFC exit error BOOL As long as this boolean variable isTRUE, STEP AS suspends the processing of

the SFC diagram and any timeout in the variable,SFC erroris reset. If you

第八章 How to edit the programP229/262

name
data

type
describe

reset the variable toFALSE, then the active step is reset the first few times.

needSFC errorstatement of.

SFC suspended BOOL as long as this variable isTRUE, STEP AS suspends the processing of the SFC

diagram.

SFCTrans BOOL If the transition is activated, thenTRUE.

SFC current

step

string Displays the name of the active step, ignoring time monitoring. In parallel

branches, the name of the step on the rightmost branch line is always stored.

SFCTip,

SFC prompt mode

BOOL Controls the prompt mode of the SFC function block.

if you useSFCTipMode=TRUEenable this flag, then you can simply

setSFCTipforTRUE, which activates the next step. whenSFCTipModeset asFALSE,

the transition is continued to be used, and the implementation continues to

activate.

8.3.5. Components "Step" and "Transform"

step sign , conversion flag

Typically, STEP AS inserts a combination of steps and transformations to be used. Inserting

a transition with no oversteps or without steps will result in a compile-time error.

Step names must be unique within the scope of the parent block. This will be specially

considered when the used action is executed in the SFC.

You can switch to the initial step by clicking on the initial step or modify the respective

properties in the SFC property settings.

All steps are defined by step properties, which can be displayed and edited in the properties

view, depending on the setting options.

When a step is activated, you must attach these actions to the step.

The transition must include conditions for subsequent steps, as soon as possible set the

conditions toTRUE. In this way, the transition condition must be set toTRUEorFALSE. It is

defined in one of two ways:

(1) Online state (direct): you replace the default transformation name with a boolean

variable, boolean value, boolean variable or boolean result, e.g.(i<100) AND b.

第八章 How to edit the programP230/262

(2) Condition for comprehensive use (individual transition or object property): You

replace the default transition name with the name of the object transition or property (,).

You can click the project➔add objectCreate these objects. This allows multiple

transformations to be used, such as "condition_xy" below the number. For example an internal

condition, an object can contain a declaration of a boolean variable, a boolean address, a

boolean constant, and a boolean ending. Additionally, it can contain multiple declarations

of arbitrary code.

Transitions consisting of transitions and object properties are marked with a small

triangle in the upper right corner of the transition box.

If the transition consists of multiple statements, it is the user's responsibility to

assign the necessary expression transition variables.

Transitions consisting of transitions and object properties are marked with a small triangle

in the upper right corner of the transition box.

第八章 How to edit the programP231/262

8.3.6. Element "action"

meets the:

Actions consist of declaring a series of statements in a valid execution language. You

can assign actions to steps.

You must create all actions in the project as POUs when they are used in SFC steps.

8.3.7. Component "Macro"

meets the:

A macro contains part of an SFC diagram, but does not display details on the main editor

view.

The use of macros does not affect the processing flow. Macros are used to hide specific

parts of the plot, for example to increase overall clarity.

By double-clicking the macro box or clicking SFC➔ zoom in macro Open the macro editor.

You can program here as inSFCin the main view of the editor. click SFC➔ shrink macro, closes

the macro.

① Main view of the SFC editor

② Macro editor view for macro 1

A macro can also contain other macros. The title of the macro editor always shows the path

to open the macro.

E.g:

第八章 How to edit the programP232/262

8.4. Continuous Function Chart (CFC)

8.4.1. CFC editor.

can be obtained fromtoolboxDrag components in the view to add them to the CFC editor.

In addition, it can also be used inCFCcommands in the menu.

You can connect a component's input and output pins by dragging a connector. STEP AS

automatically generates connecting lines (auto-routing) between components with the shortest

distance. When you move a component, the connection line automatically adjusts. If you move

an element to a position that causes the routing element's connections to overlap, then a

conflict can arise. This is done by connecting symbols () is indicated by a red outline

around it. Overlapping connections are indicated by red connection lines in the editor.

Select the pointer from the toolbox (), the shape of the cursor changes to an arrow.

You can then select the inserted components in the editor view to position and edit them.

8.4.2. Position of the break point in the CFC editor

Following the usage rules, you can set a breakpoint in any block where a variable can be

changed, and locate it in a program flow branch or another called block. In the image below,

red circles indicate possible breakpoint locations.

8.4.3. CFC components

 CFCelement "page"

symbol:

The element inserts a new page into the editor. It is only available in the page-oriented

CFC editor. The number of pages is automatically allocated based on their location. You can

enter a name and a description of the page to generate an orange title. passEdit page

sizecommand to resize the page.

 CFC element "Control Point"

symbol:

Use a control point to secure the connection point before you adjust the path of the line.

This is done by dragging the component to the desired position on the connector. Connector

lines with control points are no longer auto-routed.

 CFC element "input"

symbol:

第八章 How to edit the programP233/262

STEP AS inserts a default input element with the text "???". You can edit this field directly

by clicking and entering a constant value or variable name. Alternatively, you can click Open

the input assistant to select a variable.

 CFC element "output"

symbol:

STEP AS inserts a default output element with the text "???". You can edit this field directly

by clicking and entering a constant value or variable name. Alternatively, you can click Open

the input assistant to select a variable.

 CFC component "box"

symbol:

Use this element to insert an operator, a function block or a program. By default STEP AS

inserts components with the name ???. You can edit this field directly by clicking and entering

the function block name. Alternatively, you can open the input assistant and click to select

a function block.

In the case of a function block, STEP AS additionally displays an input field (???) above

the function block symbol. You must replace this name with the name of the function block

instance. If you instantiate a function block with constant input parameters, the function

block element displays the "Parameters..." area in the lower left corner. You can edit

parameters by clicking on this area.

In order to replace an existing box, you just need to replace the current insertion identifier

with the desired new name. When doing so, please note that STEP AS will take the number of

input and output pins defined by the POU and existing assignments may therefore be deleted.

 CFC element' jump'

symbol:

Use this element to define a position where program execution continues. You must define the

target location with a label. To do this, enter the name of the flag in the input field ???.

If the corresponding label has already been inserted, you can also select it via the input

assistant ().

 CFC component "tags"

symbol:

With the help of jump elements, a label defines where program execution jumps to.

In online mode, STEP AS automatically inserts a return flag at the end of the CFC function

block.

 CFC element "return"

symbol:

Use this element to exit the function block.

Note that return elements in CFC editing in online mode are automatically inserted before

the first line and after the last element. In single stepping, STEP AS will automatically

jump to the return element at the end before exiting the function block.

 CFC component "manager"

symbol:

Manager elements are used to handle structural components. The components of the structure

are available to you as an input. To do this, you need to name the manager element (replacing ???)

just like the structure.

The manager element is a copy of the selection element.

 CFC component "selector"

symbol:

Selector cells are used to process structural components. The various components of the

第八章 How to edit the programP234/262

structure are available to you as an output. For this purpose, you need to name the selector

cell (replacing ???) just like the focus structure.

The selector element is a copy of the manager element.

 CFC element "annotation"

symbol:

Enter comments using components in the CFC editor. Replaces placeholder text in components

with annotation text. Use the shortcut key [Ctrl] + [Enter] to insert a newline.

 CFC Component "Connection Flag - Source/Sink"

symbol: ,

Instead of connecting lines between components, you can use connection markers. This helps

you display complex graphics more clearly.

To achieve a valid connection, you need to connect the output of a component withConnection

Flags - Sourceelement and connected with the input of another elementconnection sign -

sinkelement. Both flags must have the same name. Names are not case sensitive.

Naming Considerations
1 The standard name for a connection tag isC-<nr>.<nr>is from the serial number1started.
2 You can rename standard names. To do so, you have to make sure to connect the tag-Source and

connection flags-Shen has the same name.
3 If you change the connection tag-The source name, the target name are automatically renamed.
4 if you change the connectionmark-sink, the source name is reserved.

 CFC component "input pin"

symbol:

Depending on the type of function block, you can add more inputs to the inserted function

block element. To do this, you must select the function block element and drag the input element

of the function block to the body of the function block.

NOTE: You can press[Ctrl]key-drag an input or output to connect to another location on the function block.
 CFC component "output pin"

symbol:

Depending on the type of function block, you can add more outputs to the element inserted

into the function block. To do this, you must select the function block element and drag the

output element of the function block to the body of the function block.

NOTE: You can do this by pressing[Ctrl]key-drag an input or output to connect to another location on the
function block.

第九章 Convenient features of STEP ASP235/262

第九章 Convenient features of STEP AS

9.1. Quick access to simulation functions

Start/stop softmotion simulation in the toolbar

Icon is red when not started , green after startup .

9.2. Engineering Comparison Quick Access

When the user downloads the program, the system will automatically back up the downloaded

program, and when the user clicks the icon on the toolbar, the project comparison detailed

information page will pop up.

9.3. 402 axis automatic addition function

STEP AS can automatically add 402 axes to the EtherCAT slave station, and add the number

of supported axes according to the xml of the slave station.

SC20 and A660 controllers only support the autonomous ethercat master station, and the axis

device added under the slave station is also an autonomous xml axis.

第九章 Convenient features of STEP ASP236/262

第十章 management libraryP237/262

第十章 management library

Library management includes installation, editing, and deletion of library operations. The

newly added library can be installed in the storage location of the system library or in the

project. In the corresponding dialog, you can define - the storage location of the newly added

library, and licenses can be installed and uninstalled. Some libraries cannot be used until

a license is installed.

10.1. Query the library that needs to be used in the project

The currently installed libraries are displayed in the library manager. Users can click

the corresponding library to know its data type, FB, and function information.

In the navigation bar window, double-click to open the library manager

In the library manager, select Add library

In Add Library, select Advanced

第十章 management libraryP238/262

Add the library to the project in the window

You can enter the keyword of the library in the edit box in the window, and then select the

desired library in the list box to add.

Among them, the button 'Library (R)...' can open the library installation window, which

is convenient for instant installation of the library.

10.2. View the library's capabilities

You can select the corresponding library in the library manager, and find the corresponding

function on the left side of the lower window and select it. At this time, you can view the

relevant description of the function on the right side.

第十章 management libraryP239/262

There are 3 specific instructions:

1 enter/output Here, you can view the input of the function block/The associated

type of the output variable

2 graphics You can view the input and output pin definitions of this function block

第十章 management libraryP240/262

3 Documentation If the function block in the library has a description document,

you can view some usage instructions of the function block in this window (as shown

in the above library manager, the right window).

10.3. Add library to application

Below, explain how to add the Util library to the application.

1. Select library manager,Open project ➔ edit object.

⇒ Open the library editor in the editor.

2. click library ➔ Add library

⇒ Open Add library dialog.

3. Browse this library by entering the string 'util' in the input field.

⇒ UtilThe library appears in the library view

4. Select the Util library, then close the dialog by clicking OK.

⇒ add in library managerUtillibrary.

10.4. Add library to repository

Below, the instructions describe how to install a library in the repository.

1. choose tool ➔ repository.

⇒ Open repository dialog.

2. Click the Install button.

3. Select the library you want to install. You can set file filters.

Click to open.

⇒ This library is added to the repository. The library can now be added in

the library manager.

第十章 management libraryP241/262

10.5. Use the library in your program

10.5.1. Graphical programming calls such as LD

Right-click, where you need to insert, and select several insertion methods as shown in the

figure below

If, choose Insert empty operation block, insert withEN/ENOfunction block

After insertion, an operation block will be inserted into the program

At this point, you can enter the function block name in the edit box, or click the select

button to open the input assistant for selection.

If you choose to insert an operation block, it will be opened directly input assistant offer choice

第十章 management libraryP242/262

After selecting the corresponding function block, you can define the function block (manually

editable) as shown in the figure below.

After the function block variable is defined, click the blank space of the program to activate

the automatic declaration window.

After clicking OK, the program will automatically declare the function block in the variable

window

第十章 management libraryP243/262

10.5.2. ST language call

Place the mouse on the blank space of the program editing window, right-click, and select

Input Assistant

 Note: You can place the mouse cursor at the position to be inserted, and use the shortcut key 'F2' to open
the input assistant.

After the addition is complete, the code block shown in the following figure will be added

to the program

At this time, the name of the function block can also be modified.

At this time, you need to manually modify the name of the function block in the variable window,

or use the shortcut key 'SHIFT + F2' to open the automatic declaration window to declare the

function block.

10.5.3. input assistant

第十章 management libraryP244/262

For details, please refer to the chapterinput assistant'
Users can filter library functions/function blocks that they want to filter by type, or find

and insert by text search.

10.6. development library

The following library types can be created:

a) *.libraryImplementation library

b) *.compiled-library:Protection library;Resource code is not freely accessed

c) *._Itfs.library: Interface library

d) *_Cnt.library:container library

To enable precise access to integrated objects, library namespaces can be defined. Increase

the precision of access by adding namespaces before the module name.

Repositories (dongles) can be protected by using a license. If you use protected library

modules, a valid licensed dongle must be inserted into the computer.

External libraries can be integrated into the application. external library isSTEP

ASprogramming in a different programming language, e.g.Clanguage.

10.6.1. Development library example

This section describes the steps to create a new library project and install it into the library

repository.

1. select from the menudocument➔New Construction.

2. select category"Library", select "Blank library". The dialog box shown below is displayed.

第十章 management libraryP245/262

Enter the name and click the [OK] button.

The project for which the library has been created. A library's project file has the

extension library. For libraries, the POU view is displayed in the Navigator. Add the objects

needed to create the library to the POU view.

3. Double-click the "Project Information" object of the POU view. Displays the Project

Information dialog box.

Please change "Company", "Title", "Edition" as needed. This information is displayed on the

selection screen when adding the library to be created to the project.

If "Publish" is checked, a confirmation message will be displayed when attempting to change

the library.

Click the [OK] button. The project information confirms the settings.

4. Right-click the object with the filename at the top of the navigator and select Add Object

from the menu that appears➔POU. Select "Function Block", enter a name and select a description

language.

第十章 management libraryP246/262

5. Enter the program for the function block.

After entering the program, execute the compile in the menu➔Check all objects, for syntax

checking. If an error is displayed after executing this command, the program must be changed,

and then executed again to check all objects.

6. select from the menudocument➔Save the project, and load the library. The created library

is saved to the local repository.

7. select from the menutool➔library.

show"library"Dialog. In"installed library" column to confirm that the created library is

Walker
Construct

第十章 management libraryP247/262

installed.

Click the [Details] button to check information such as function blocks included in the library.

At this point, the steps to install the library into the library repository are complete.

Note: The source code of the installed library can also be viewed from the project that uses the library. If you
do not want to view the source code, in Step10, please select the file in the menu➔Save the project as a compiled
library. Libraries will be saved as compiled libraries (.compiled-library files).
Compiled libraries do not need to be installed into the repository. Click the [Install] button in the "Library" dialog
box, and then select the saved compiled library file.

10.6.2. library version

You can install multiple versions of the library to the system at the same time. And can

use a specific version.

You can integrate multiple libraries in a project at the same time (no priority).

10.6.3. library encryption

In the project settings of the development library, encryption can be set.

第十章 management libraryP248/262

第十一章 security functionP249/262

第十一章 security function

This section describes security-related functions and operation procedures such as user

management and project encryption.

project illustrate

User Management

The execution authority can be set for each group registered by the user for operations
such as the execution of menu commands, addition, editing, and deletion of objects.

Permissions can be set for each user for logging in to the device, allowing login by
entering a password.

Encrypt/Sign Can be encrypted with the password of the project file

write

protection

The project file can be write-protected to prevent accidental changes to the project file
due to misuse, etc.

11.1. User Management
It is divided into project user management and device user management.

11.1.1. Project user management

When creating a new project, the Owner group and Everyone group will be registered, and the

Owner user will be generated synchronously.

Group user Remark

Owner Owner
All operations can be performed.

User: Owner's password is blank.

Everyone Owner All users will be automatically registered.

11.1.2. Create new users and groups

Operation example:Create a new group (group name: GroupA) and a user belonging to the

group (user name: Fred) and set permissions so that users belonging to GroupA can access the

POU object: "POU_1".

1. Select the menu barproject ➔ Project settings. exist"Project settings"Select in

dialog"users and groups"category.

第十一章 security functionP250/262

2. Click [Add to] button.

show"Add user" dialog. Enter the information of the newly added user, such as Fred. Click

the [OK] button.

The "Login" dialog box is displayed. To add a new user, you need to log in as the

Owner user.

3. Enter "Owner" in the "Username" field.

第十一章 security functionP251/262

4. The initial password for "Owner" is set to blank. Please leave the "Password" field blank.

Click the [OK] button.

Logging in as the Owner user is complete, and a new user (Fred) is added to the "Users" tab

screen.

The logged in user name (Owner) is displayed in the Status field.

5. Select the "Group" tab and click the [Add] button. Displays the Add Group dialog. Enter

the information for the newly added group.

Please enter information about the newly added group GroupA. Specify the members who belong

to this group in the "Members" column. Select the newly added user in "Step 4".

第十一章 security functionP252/262

6. Click the [OK] button.

Added a newly added group to the "Groups" tab screen. Register user: Fred as a member in GroupA.

7. Click the [OK] button.

The Project Settings dialog closes.

At this point, the user Fred's registration and registration to the GroupA group has been

completed. The groups and users after the steps are completed are shown below.

§ User and group information can be exported in XML format. Click the [Export/Import] button

in the user and group settings screen, and then select the "Export Users and Groups" menu.

The "users" file can be exported.

§ Select the "Import Users and Groups" menu to import the ".users" file.

11.1.3. Set operation permissions

Set permissions on a single program PLC_PRG object to make it visible to users belonging

to GroupA. Before performing the following steps, add the PLC_PRG object to the project.

1. Select Project ➔ User Management ➔ Authorization in the menu bar. The "Authorization"

dialog is displayed.

Group user Remark

Owner Owner A group that can perform all operations.

Everyone Owner, Fred A group to which all users are automatically

registered.

GroupA Fred Newly added group.

第十一章 security functionP253/262

2. Select the action that grants the permission from the Action column.

Select Project Object➔Browse➔StepController➔PLC Logic➔Application➔PLC_PRG.

3. Set permissions in the "Authorization" column.

If the "Login" dialog box appears, enter "Owner" in the "Username" field, leave the "Password"

field blank, and log in.

4. Click the [Close] button.

In addition, you can directly select the object to be set from the left view, and set

the permissions in the properties.

The settings of the operation authority can be exported in XML format. Click the [Export/Import] button in
the "Authorization" dialog box, and then select the "Export all permissions" menu, or the "exportselected
permissions" menu. "Can export .perms" files.
Select the "Import Permissions" menu to import ".perms" files.

10.3.4Execute the action for which the permission is set

第十一章 security functionP254/262

11.1.4. User login and logout

If there is a logged in user, select theProject➔User Management➔User Logout, to perform

logout.

Double-click an object with permissions set on the navigation bar window and you will be

prompted to log in. or directlyProject➔User Management➔User Login

Object display operations are restricted and the "Login" dialog box is displayed.

Enter the "User Name" field and "Password" field, and then click the [OK] button.

"10.1.2 Create new users and groups"Enter the username and password of the added user in. The

login is complete and the POU_1 object is displayed.

The logged in username is displayed in the Status field.

11.1.5. Device user management

Device users are users for device operations, and only device users with permissions can

log in.

User: Administrator, Password: Administrator The user is pre-registered as a device user.

(When logging in as the Administrator user for the first time, you need to set an arbitrary

password.)

1 Connects PCs and SC series controllers with STEP AS installed.

Double-click the [Device] object StepController on the navigation bar window.

The Device setting screen is displayed.

2 Click the "Users and Groups" tab. The "Users and Groups" screen is displayed.

第十一章 security functionP255/262

3 Click [] icon (Synchronization). A confirmation dialog is displayed.

4 Click the [Yes] button. Displays the Device User Login dialog box.

5 Enter "Username" and "Password".

Enter Administrator in the "Username" field and Administrator in the "Password"

field.

6 Click the [OK] button.

7 Enter an arbitrary password.

Please enter an arbitrary password to set the password of the Administrator user. If you forget

your password, you will not be able to log in to the device.

8 Click the [OK] button.

A password for the Administrator user has been set and logged in as the Administrator user.

第十一章 security functionP256/262

9 Select Online from the menu ➔ Login to

● To log out the user while the user is logged in, select theOnline ➔ Security ➔ Logout

current online user.

● Device users can be added, deleted, and passwords changed in the Users and Groups screen.

Add device users:

To delete a device user:

To change the device user's password:

● Users registered in the project user management can be imported as device

users. Clicking the button will display the "Import Users" dialog. Select the

users to import, and then click the [OK] button. Passwords managed by project users are not

imported at this time. Click the [Edit] button on the "Users and Groups" screen to set the

password of the imported user.

● Device user management information can be exported.

On the "Users and Groups" screen, click [] icon (Export to Disk). Files can be saved in

XML format (".dum" files).

To import the exported ".dum" file, click [] icon (Import from disk).

第十一章 security functionP257/262

 Device user management information can be initialized by device reset.

 If you forget your password, you will not be able to log in to the SC series

controller. In this case, reset the SC series controller. For the reset method of

the SC series controller, refer to the SC series series user's manual (hardware).

11.2. encryption

This section describes how to encrypt project files.

11.2.1. Encrypt project files

Project files can be encrypted with a password. If a password is set. A password will be required

to open the project file.

1. Select Project ➔ Project Settings in the menu bar.

2. Select the "Security" category in the "Project Settings" dialog.

The "Security" screen is displayed.

3. Tick ​ ​ "Enable file encryption" and enter the password.

4. Click the [OK] button.

At this point, the password setting has been completed.

When opening a project file, a screen asking for a password will be displayed. In this case,

please enter the set password.

第十一章 security functionP258/262

11.2.2. Encryption of communication lines

The communication between STEP AS and STEP controller can be encrypted using certificates.

This section describes how to encrypt communications with the certificate held as a trusted

certificate.

1. Double-click the [Device] object on the navigation bar window.

The Device setting screen is displayed. Open the "Communication Settings" tab.

2. Enable "Encrypted Communication" in the device menu.

When "Encrypted Communication" is enabled, the connection wires between the IDE, gateway and

controller are shown in yellow.

3. Click the Scan Network menu. Displays the Select Device dialog.

第十一章 security functionP259/262

4. Select the connected controller and click the [OK] button.

A message appears stating that the controller's certificate has not provided a trusted

signature for encrypted communications

5. When the [OK] button is clicked, the communication can be encrypted by installing the

certificate displayed in the message as a trusted certificate in the local "Controller

Certificate" storage area on the PC.

The registered controller certificate can be confirmed with certmgr.msc in the

C:\Windows\System32 folder.

If the controller's certificate is used as a trusted certificate, the certificate is valid

for 30 days.

If the certificate has expired, the expired message will be displayed in step 4 above.
The certificate period can be extended by clicking the [OK] button.

11.3. Security feature: write protection

This section describes how to write-protect the project file to prevent accidental changes

to the project file due to misoperation, etc.

11.3.1. Open as read-only

Open the project file as read-only.

When selecting an open project file, please check "Open as read-only file".

Unable to save when opened as read-only file.

To save the project file, select "Unable to save project file. Click Options" displayed in

the menu bar and select the displayed menu.

第十一章 security functionP260/262

11.3.2. Set the published flag

Set the published flag in the project information of the project file.

Project files with the published flag set cannot save changes.

Select the menu barProject➔Project Information, open the screen of the "Summary" tab, and

check "Publish".

To save a project file with the published flag set, select "Unable to save project file. Click

Options" displayed in the menu bar, and select the displayed menu.

project illustrate

Save the project on disk with a different

filename
Project files can be saved as writable files.

Exit read-only mode Keep the project file open read-only.

第十一章 security functionP261/262

After-sales service
Repair and maintenance

1. For repair and maintenance, please contact the product agent

first;

2. If the product has been installed in the equipment, please

contact the equipment manufacturer first.

Technical Services

Customer technical consultation

Tel: (86) 13917890469 (Zhong Gong)

Consultation time: Monday to Sunday 9:00--17:30 (except specific

holidays)

After-sales technical and maintenance consultation (repair of

faulty parts, purchase of repair parts and optional accessories)

After-sales support: 400-168-2718

Purchase Inquiry: 13925286547Manager Zhou

Consultation time: Monday to Sunday 9:00--17:30 (except specific

第十一章 security functionP262/262

holidays)

Internet technical information

	SC series controller related manuals
	Precautions
	content
	glossary
	第一章 Overview
	1.1.SC Series Controller Overview
	1.2.Overview of STEP Automation Studio
	1.2.1.Introduction to STEP Automation Studio software
	1.2.2.Software acquisition and installation requirements
	1.2.3.installation steps
	1.2.4.Uninstall STEP AS

	1.3.STEP AS and hardware connection

	第二章 Quick start
	2.1.Start the programming environment
	2.2.Exit the programming environment
	2.3.name of each part
	2.3.1.Menu Bar
	2.3.2.toolbar
	2.3.3.navigation bar window

	2.4.Engineering operations
	2.4.1.Operating procedures
	2.4.2.Project Wizard
	2.4.3.Save the project
	2.4.4.Open project
	2.4.5.Close the project
	2.4.6.Composition of the project
	2.4.7.Create a backup when saving a project
	2.4.8.Automatically save project files
	2.4.9.Export and import objects
	2.4.10.Variable table export and import
	2.4.11.Export Import Project Archive
	2.4.12.add object
	2.4.13.Add device

	2.5.Device configuration
	2.5.1.Overview
	2.5.2.toolbar
	2.5.3.Add master
	2.5.4.Add device
	2.5.5.Synchronization disable/enable master
	2.5.6.Right-click function
	2.5.7.custom layout
	2.5.8.Open configuration table

	2.6.Create a program
	2.6.1.Process of creating a program
	2.6.2.program creation interface
	2.6.3.Create Program Objects (POU Objects)
	2.6.4.Types of programming languages
	2.6.5.variable
	2.6.6.Functions and function blocks

	2.7.input assistant
	2.7.1.Start input assistant
	2.7.2.coding assistant

	第三章 System Configuration
	3.1.Controller configuration
	3.1.1.Communication settings
	3.1.2.application
	3.1.3.Backup and Restore
	3.1.4.document
	3.1.5.users and groups
	3.1.6.PLC settings
	3.1.7.access permission
	3.1.8.log
	3.1.9.Task configuration
	3.1.10.state
	3.1.11.information
	3.1.12.display language
	3.1.13.version display
	3.1.14.online help

	3.2.EtherCAT configuration
	3.2.1.Autonomous EtherCAT Master Configuration
	3.2.2.Default EtherCAT Master Configuration
	3.2.3.Autonomous EtherCAT slave configuration
	3.2.4.scan device
	3.2.5.EtherCAT common faults

	3.3.Modbus serial port configuration
	3.3.1.Add Modbus device
	3.3.2.Modbus master configuration
	3.3.3.Modbus slave configuration
	3.3.4.Modbus common faults
	3.3.5.Modbus TCP configuration

	3.4.CANopen configuration
	3.4.1.CANbus configuration
	3.4.2.CANopen master configuration
	3.4.3.CANopen slave configuration
	3.4.4.CANopen communication failure

	3.5.Local built-in IO configuration
	3.5.1.Add device
	3.5.2.SC20 local IO configuration

	3.6.LocalBus configuration
	3.6.1.Add device
	3.6.2.localbus master configuration
	3.6.3.localbus slave configuration

	3.7.Pulse pulse axis configuration
	3.7.1.Add pulse axis master-slave device
	3.7.2.Configuring the Pulse Axis Slave Device
	3.7.3.Control pulse axis slave device

	第四章 programming basics
	4.1.direct address
	4.2.variable
	4.2.1. Variable Definition
	① logo
	② AT address
	③ type of data
	④ initial value

	4.2.2. Variable types
	① local variable
	② input variable
	③ output variable
	④ input and output variables
	⑤ global variable
	⑥ Temporary variables
	⑦ static variable
	⑧ configuration variable

	4.3.constant

	第五章 Programming language
	5.1.Introduction to programming languages ​​supported
	5.2.Structured Text Language (ST)
	5.2.1. Expressions
	5.2.2.ST instruction
	(1)assignment instruction
	(2)function block call
	(3)RETURN instruction
	(4)IF instruction
	(5)CASE instruction
	(6)FOR loop
	(7)WHILE loop
	(8)REPEAT loop
	(9)CONTINUE statement
	(10)EXIT statement
	(11)JMP statement
	(12)Notes

	5.3.Ladder Logic Diagram (LD)
	5.3.1. Overview
	5.3.2. Ladder Diagram Elements
	5.3.3.LD General Settings
	5.3.4.LD menu commands
	5.3.5. Drag and drop operation
	5.3.6. Graphic Display Tool
	5.3.7.LD debugging

	第六章 Debug and Diagnostics
	6.1.run/stop
	6.1.1.Running and Stopping the Controller
	6.1.2.single cycle

	6.2.breakpoint
	6.2.1.breakpoint settings
	6.2.2.execution point setting
	6.2.3.call stack view

	6.3.debug operation
	6.3.1.Writing of Values ​​and Forcing of Values
	6.3.2.monitor
	6.3.3.Process control
	6.3.4.operating mode

	6.4.Monitoring function
	6.4.1.Monitoring variables in the declaration editor
	6.4.2.Monitoring variables in the implementation part of
	6.4.3.Monitoring variables in the watch view

	6.5.reset
	6.5.1.Warm reset/cold reset/reset (PLC initialization)
	6.5.2.Reset the device from STEP AS

	6.6.Device tracking feature
	6.6.1.Device Tracking General Features
	6.6.2.Device tracking analysis function

	第七章 Axis run control configuration
	7.1.Axis running configuration
	7.1.1.Axis Basic Settings
	7.1.2.Unit Conversion Configuration
	7.1.3.Automatic mapping settings

	7.2.Single axis control
	7.2.1.Enter the axis control page
	7.2.2.Axis operation and status
	7.2.3.Multi-axis debugging

	7.3.Simulate Servo Drive

	第八章 How to edit the program
	8.1.Structured Text (ST) Programming
	8.1.1.Syntax of ST program
	8.1.2.Comment ST procedure
	8.1.3.call function block

	8.2.FBD/LD/IL programming
	8.2.1.FBD/LD/IL Editor (Editor)
	conventional components

	8.3.Sequential Function Chart (SFC) programming
	8.3.1.SFC editor
	8.3.2.execution order
	8.3.3.action qualifier
	8.3.4.SFC logo
	8.3.5.Components "Step" and "Transform"
	8.3.6.Element "action"
	8.3.7.Component "Macro"

	8.4.Continuous Function Chart (CFC)
	8.4.1.CFC editor.
	8.4.2.Position of the break point in the CFC editor
	8.4.3.CFC components

	第九章 Convenient features of STEP AS
	9.1.Quick access to simulation functions
	9.2.Engineering Comparison Quick Access
	9.3.402 axis automatic addition function

	第十章 management library
	10.1.Query the library that needs to be used in the pro
	10.2.View the library's capabilities
	10.3.Add library to application
	10.4.Add library to repository
	10.5.Use the library in your program
	10.5.1.Graphical programming calls such as LD
	10.5.2.ST language call
	10.5.3.input assistant

	10.6.development library
	10.6.1.Development library example
	10.6.2.library version
	10.6.3.library encryption

	第十一章 security function
	11.1.User Management
	11.1.1.Project user management
	11.1.2.Create new users and groups
	11.1.3.Set operation permissions
	11.1.4.User login and logout
	11.1.5.Device user management

	11.2.encryption
	11.2.1.Encrypt project files
	11.2.2.Encryption of communication lines

	11.3.Security feature: write protection
	11.3.1.Open as read-only
	11.3.2.Set the published flag

	After-sales service

